
The Hitchhikers Guide to Sharing Graph Data

Matthew Roughan and Jonathan Tuke

ARC Centre of Excellence for Mathematical & Statistical Frontiers

School of Mathematical Sciences, University of Adelaide, Australia

Email: {matthew.roughan,simon.tuke}@adelaide.edu.au

Abstract—A graph is used to represent data in which the
relationships between the objects in the data are at least as
important as the objects themselves. Over the last two decades
nearly a hundred file formats have been proposed or used
to provide portable access to such data. This paper seeks to
review these formats, and provide some insight to both reduce
the ongoing creation of unnecessary formats, and guide the
development of new formats where needed.

Keywords-Graph, network, XML, GraphML, GML, database,
data exchange, data representation.

I. INTRODUCTION

Exchange of data is a basic requirement of open scientific

research. Accurate exchange requires portable file formats,

where portability means the ability to transfer (without ex-

traordinary efforts) the data both between computers (hard-

ware and operating system), and between software (different

graph manipulation and analysis packages). The problem is

exacerbated with big data, where human intervention cannot

be expected to clean problematic datasets.

A search revealed that there are over 100 formats used

for exchange of graph data. It seems that every new tool for

working with graphs derives its own new format.

A small set of standardised formats for images (and other

consumer data) is crucial for the functioning of digital society.

Graph formats have affected a small community of sophisti-

cated researchers and tool builders, so standardisation hasn’t

occurred because it just hasn’t been that important. However,

this community is growing, and the need for open exchange of

information is growing, particularly where the data represent

some real measurements that were expensive to collect.

The tendency to create new formats in preference to using

existing tools is unhelpful, particularly as the time to “create”

a format might be small, but the time to carefully test formats

and read/write implementations is extensive. Reliable code is

critical to maintain data quality, but many tool developers seem

to focus on features instead of well-audited code. Moreover

support of formats, for instance clear documentation and

ongoing bug fixes, is often lacking.

An explosion of formats is therefore a poor state of affairs.

The existing formats do include many of the features one

might need, and some are quite extensible, so the bottleneck

is not the features of the existing formats. We hypothesise that

new formats are developed because detailed information about

those already available is inaccessible. This is the gap that this

paper aims to fill.

This work concentrates on graph exchange formats. Such

formats have certain requirements above and beyond simple

storage: most obviously portability. However, portability in

this context is not purely about syntax. Exchange also requires

common definitions of the meaning of the attributes. On the

other hand, file size is not a primary consideration. Hence

many exchange formats pay little attention to this and related

details (e.g., read/write performance), but as exchange of very

large datasets becomes important, the priorities may change.

Many of the formats presented may seem obsolete. Some

are quite old (in computer science years). Some have clearly

not survived beyond the needs of the authors’ own pet project.

However, we have listed as many as we could properly doc-

ument, partially for historical reference, and partially to show

the degree of reinvention in this area. But more importantly,

because old and obscure isn’t bad. For instance NetML, a

format that doesn’t seem to be used at all by any current

toolkits, incorporates some of the most advanced ideas of any

format presented. A good deal could be learnt if tool builders

were to reread the documentation on this format.

It is important to note that this paper does not present yet-

another format of our own. It is common in this and other

domains for the discussion of previous works to be coloured

by the need to justify the authors’ own proposals. Here we

aim to be unbiased by the need to motivate our own toolkit,

and so (despite temptation) do not provide any such.

We do not argue that new graph formats should never be

developed. In some applications new features are needed that

are not present in the existing formats. However, it is critical

that those who wish to propose new ideas should understand

whether they are really needed. Moreover, in studying the

existing formats, and their features, we learn what should be

required in any new format to make it more than a one-shot,

aimed at only one application. In fact, the results suggest that

new formats are desirable for several reasons, but that perhaps

what would be more useful would be a container format

capable of providing self-documentation and meta-data-like

features, while encapsulating a set of open encodings.

So the value of this work is threefold: firstly it provides

a relatively complete set of information about the currently

available formats, secondly it provides a basis for selection of

a suitable format, and thirdly it provides information about the

nature of the features that could be used in future developments

of graph exchange strategies, in particular, the requirements

of open, big data are that data formats supporting native

compression become more universal.



II. BACKGROUND

Graphs (alternatively called networks) have been used for

many years to represent relationships between objects or

people.

A mathematical graph G is a set of nodes (or vertices) N
and edges (or links or arcs) E ⊂ N ×N . The edges represent

relationships between the nodes.

An alternative representation of a graph can be given

through its adjacency matrix A, defined by

Aij =

{

1, if (i, j) ∈ E ,
0, otherwise.

Other representations exist (and are discussed below in detail).

These alternatives are often used to create computationally

efficient operations on the graph.

Additional information is often added to a graph: e.g.,

• node or link labels (names, types, ...);

• values (distances, capacity, size, ...); and

• routing (paths taken when traversing the graph).

This additional information is often critical to make use of the

graph data in any real application.

It has been necessary for many years for researchers in

sociology, biology, chemistry, computer science, mathematics,

statistics and other areas to be able to store graphs representing

concepts as diverse as state-transition diagrams, computer-

software structure, social networks, biochemical interactions,

neural networks, Bayesian inference networks, genealogies,

computer networks, and many more. Researchers also need

to share data. They have done so by sharing files. As a result

portable file formats for describing graphs have been around

for decades.

This document is concerned with providing information

about these formats, specifically with the intention of moving

towards a smaller number of standard formats.

We only look here at publicly disclosed formats, for the

obvious reason that a format can’t really be called a data

exchange format unless its definition is public. It is fair to say

that although many were intended for exchange of information,

most failed at this and were only really used for a single tool

or database of graphs. In a few other cases, the format was not

intended as an exchange format, but has become a de facto

exchange format by virtue of the inclusion of IO routines

in other software than its originator. In any case, we have

tried to be inclusive here: we include anything that might be

reasonably called an exchange format (and which is publicly

documented to some degree), rather than trying to exclude

those which we guess are not.

There are many subtypes of graphs, and generalisations. For

instance: the general description above is that of a directed

graph. An undirected graph has the property that if (i, j) ∈ E
then so too is (j, i).

It is noteworthy that it is often possible to represent one

type of graph in terms of the other: for instance an undirected

graph may be represented by a directed graph by including all

reverse links in the data. However, this is inefficient.

Moreover there is the issue of intention. The intention of

the person storing the data is important: for instance, an

undirected graph that is stored as a directed graph may be

edited to become directed. A native undirected format enforces

the correct semantics. Thus when considering the type of

graph being stored, we consider only the explicitly supported

subtypes.

Other generalisations of graphs include multi-graphs, hyper-

graphs, and meta-graphs. Subtypes include trees and DAGs

(Directed Acyclic Graphs). Once again, it is often possible to

represent these in terms of the simple directed graph, but often

this will be inefficient, and deficient in terms of intention. We

will therefore look for native support for these generalisations

and subtypes.

A. Related work

We distinguish this work from the study of graph databases,

which have a similar role in storing data where the rela-

tionships have at least as much importance as the entities

they relate. However, although they may hold the same type

of data that we are considering here, the motivations for a

graph database are different. Typically, those concerned with

databases are interested in ACID (Atomicity, Consistency, Iso-

lation, Durability) and other similar properties. The underlying

assumption is that the data is changing dynamically according

to some set of transactions and operations and that the database

should work correctly under these conditions. Consequently

graph databases are not simply concerned with the structure

and description of the data, but also how that data may be

operated on, and queried. On the other hand, the standard

assumption in data exchange is that the data itself is relatively

static, but portability is important.

There is a wide-ranging survey of graph databases [1],

which is more concerned with the underlying database aspects,

e.g., the relationship between a graph database and other more

traditional relational database, and the properties of various

exemplar graph databases.

There is some overlap of concerns: in both cases there is

some interest in data integrity, compression, and the like, but

it is fair to say that these issues have taken second place in

the design of graph exchange formats.

There have been a number of other efforts to gather similar

information on graph exchange formats by researchers [2]–[4]

and software distributors [5], [6]. The results provided inspira-

tion for some of the descriptors used here, but this work aims

at being more comprehensive. We surveyed approximately 100

possible formats, and include detailed data on 76, as compared

to 7 in [3], 28 in [4], 5 in [5] and 11 in [6]. Bodlaj [2] considers

a similar number of formats in general terms, but only 14 in

detail, and with a different focus: for instance they provide

more information on software support for formats than we

provide here.

One additional paper to consider is [7], which was written

specifically with the view of designing a new, more universal

graph format. We deliberately avoid this approach in order to

avoid bias in our discussion.



III. THE FILE FORMATS

As noted the aim here is to describe graph exchange formats,

i.e., formats that are used to exchange data between scientists

and programming environments. Not all of the formats started

out that way – some were intended as internal formats for a

particular software system, but have become de facto exchange

formats when another system sought to leverage existing data

by incorporating an existing format. A few of the formats are

still primarily internal to a single system, but are important

to describe because they exhibit an interesting feature. In the

main we concentrate on those that were designed with data

exchange in mind, or have been used in that way in practice.

This list is incomplete. There are some formats that we have

observed in the literature, but are not adequately documented

(e.g., Gem2Ddraw), or which appear to only be used as an

internal format for a single tool.

There are a few formats that we have lumped together

under the general heading of TGF (the Trivial Graph Format)

because they are all functionally equivalent to a delimited

edge list. There is no point in listing every variant of this

approach: there are many and they vary mainly on the choice

of storage (plain ASCII through to Excel), and delimiter (tabs

and commas are common).

There are many file formats that could, in principle, contain

a graph: e.g., XML, JSON, etc. For that matter any image file

could contain an adjacency matrix. Unless there is a specific

extension of these designed to provide support for graphs, in

which case we list the specific not the generic.

We also aim to avoid, for simple practicality, formats that

represent data that has a graph structure, but whose main

content is not the graph. For instance HTML: the graph

structure of the WWW is vastly smaller than the content and

HTML is intended to store both in a distributed fashion.

Despite this focus, there were still 76 file formats consid-

ered. Consequently, we do not have space to present details of

all of the file formats here. The details, and original data can

be obtained from [8]. This paper provides summary statistics

and analysis of the file formats.

We sought feedback on our data from authors or maintainers

of the file formats, and received input for 23 of the formats.

This may seem like a small proportion, but remember that

many of these have not been maintained for some number of

years.

In order to describe the formats we will consider here,

we need some simple means to compare and contrast. Of a

necessity, these will oversimplify some of the issues. What’s

more, many descriptions of file formats are imprecise. It is

common to describe the format by reference to examples.

Although useful for simple cases, these leave out important

details: for instance: the character set supported, and even

more surprisingly, the format of identifiers. It is often vaguely

suggested that these are numbers, but without formal definition

of what is allowed (presumably non-negative integers, but are

numbers outside the 32-bit range supported?).

In the following, we make the best estimate of the capabili-

ties of each format through reference to online documentation,

and through a survey of the file format creators. In many

cases the results are inferences, so in this section we will

outline the features we describe, and the assumptions made

in compiling our data. However, we have made the best effort

possible to contact authors of formats, and their comments

about capabilities have been given precedence.

Due to space limitations, we focus on some of the more

interesting characteristics of the file formats. We provide a

more complete analysis of features in [8], including details

and references for all of the formats considered here.

A. Encoding

The primary encoding of the file is, in principle, a simple

distinction in file type between text and binary files. However,

text files today can use multiple different character sets, and

this is important because some graphs will be labelled with

non-English character sets. However, the majority of file-

format definitions leave unspecified the character set to be

used. We assume here that the character set is ASCII, unless

there is some indication otherwise, either an explicit statement,

or in the case of applications of XML it is assumed that

the character set supported is Unicode. Figure 1 indicates the

proportions of files providing each.

Storage type
ascii
ascii/binary
binary
ISO 8859
unicode
UTF−8

Fig. 1: File encoding proportions (total number is 76). It is

noticeable that text-based encodings dominate. This reflects

the need for portability in these formats.

B. Representation

The second critical decision in storing a graph is the choice

of representation:

matrix : The graph’s full adjacency matrix.

edge list : A list of the graph’s edges [9].

smatrix : The matrix representation is poor for sparse graphs,

which are common in real situations. However, some

tools actually store a sparse matrix, which is almost

equivalent to an edge list. There is a subtle difference

in that a matrix view of the edges in a network cannot

contain much detail about the edges.

neighbour lists : This is a list of the graph’s nodes, each

giving a list of neighbours for each node. Often called



Representation
edge
edge/const/proc
edge/matrix
edge/neigh
edge/neigh/matrix
edge/path
edge/paths
edge/procedural
matrix
matrix/smatrix
neigh
neigh/edge/matrix
smatrix
smatrix/matrix

Fig. 2: Proportions of files supporting different representations

(total number is 76). We list all the types of representation

possible. Note that a substantial majority provide the edge list

representation.

adjacency lists we avoid that term because it is easily

confused with the edge list.

path : One can also implicitly represent a graph as a series

of path descriptions (essentially a path is a list of con-

secutive edges). This could be useful, for instance, with

a tree or ring.

constructive : Graphs can often be described in terms of

mathematical operations used to construct the graphs: for

instance graph products on smaller graphs [10]. See [11]

for a description of “levels” of graph formats.

procedural : Many graphs can be concisely defined by a

set of procedures, rather than explicit definition of the

nodes and links. This type of graph format could be

very concise, but verges on creating another programming

language. In fact, many graph libraries for particular

programming languages essentially provide this, but in

a non-portable manner.

These representations are given varying names in the literature,

but we use the names above to be clear. Figure 2 shows the

proportions of each type (note a file can support multiple

representations).

The representation is important: for a graph with N vertices

and E edges, the adjacency matrix requires O(N2) terms, the

edge list O(E) terms, and the neighbour list O(N+E) terms.

However, the terms in a matrix are {0, 1} whereas the terms in

the edge and neighbour lists are node identifiers (consider they

might be 64 bit integers), so the size of a resulting file based

on each representation depends on many issues, including the

way the data is stored in the file. No approach is universally

superior.

Moreover, some may be easier to read and write: for

instance a neighbour listing may be slightly more compact than

an edge list, but the latter has the same number of elements

per line, potentially making it easier to perform IO in some

languages.

More subtly, a neighbour-list representation treats edges

as properties of nodes, whereas an edge list treats edges

Structure
BNF
Intermediate
JSON
Other
Simple
XML

Fig. 3: File structure proportions (total number is 76).

as objects in their own right; and the matrix representation

treats the graph as the only object with nodes and edges as

properties of the graph. Although a program can internally

represent data however it likes, and read in a neighbour list

into structures that treat edges as objects in their own right,

the native treatment of data is reflected in the ease with which

attributes can be added. For instance, in a neighbour list it

is intrinsically harder to record attributes for edges, and in

the matrix representation it is harder to record attributes for

nodes. This is, fundamentally, why we regard edge-list and

sparse-matrix formats as different.

Some graph file formats allow alternative representations,

and so we list all that are possible. However note that this is

often actually multiple file formats under one name. It seems

rare to allow a mixed representation.

We haven’t (yet?) reported on whether edge-list formats

explicitly lists nodes or only implicitly lists them as a con-

sequence of edges. The latter is briefer, but requires a special

case for degree 0 nodes.

When considering generalisations of graphs, other repre-

sentations are possible (for instance tensors can generalise

the concept of an adjacency matrix for multi-layer networks).

However, codification of these is an ongoing research topic

[12] and so we will not try to encapsulate it here.

C. File structure

This field describes how the file format’s structure is de-

fined. The cases are:

simple : the typical approach to create a graph format is to

use one line per data item (a node, an edge, or a neigh-

bourhood), with the components of a line separated by a

standard delineator (a comma, tab, or whitespace). There

are many variations on this theme, some more complex

than others, for instance including labels, comments or

other information. These formats are usually specified by

a very brief description and one or two examples. They

rarely specify details such as integer range or character

set.

intermediate : this is a slight advance on a simple file

format, in that it includes some grammatical elements.



For instance, the file may allow definition of new types of

labels for objects. However, in common with simple files,

these are usually only specified by a very brief description

and one or two examples, not a complete grammar.

BNF : means that the file format is described using a gram-

mar, loosely equivalent to a Backus-Naur Form (BNF).

This is perhaps the most concise, precise description.

When done properly it precisely spells out the details

of the file in a relatively short form.

XML and JSON : many graph file formats extend XML,

JSON, SGML, or similar generic, extensible file formats.

This is a natural approach to the problem, and allows

a specification as precise as BNF, though only through

reference to the format being extended. Thus it is precise,

but sometimes rather difficult to ascertain all of the

details, unless one is an expert in XML, etc.

On the other hand, these approaches draw on the wealth

of tools and knowledge about these data formats. On the

other hand again, to use those tools the model of your

graph object has to map to the XML model (or at least

be easily transformed into that form).

Other : There are a small number that don’t fit cleanly into

a category: for instance procedural approaches.

Figure 3 shows the proportion of each type of structure within

the files.

D. Evolution of Formats

We have included in our data a reference time frame to

provide some historical context for the format. The dates are

based on explicit records from the first recorded reference to

the format, through to the last recorded date of maintenance.

These should not be seen as a completely reliable data, but

rather an attempt to document the historical development of

this field, so much of which is not in the archival journals.

Figure 4 provides a quick summary of the evolution of the

formats divided by file structure. The figure shows a smoothed

distribution of the origin dates of formats, but structure. We

can see that there was a flurry of activity in the late 90s

continuing on until today, but the style of contributions has

changed over time. It is interesting to see how XML became

flavour of the year around in the late 90s, and then dropped

out of popularity in recent years, and in the most recent past

there seem to be several efforts to design graph formats on top

of JSON. It seems there are fads even within technical fields.

IV. FILE FEATURES

In considering the file formats we examined some 27

potential features of the format. We describe here the most

interesting.

integral meta-data : Meta-data is data about the graph: for

example, its name, its author, the date created, and so on.

This is very important data, but many formats provide no

means to include it in the file, and instead rely on external

records. We refer to meta-data as integral if it is contained

in the file itself.

0

1

2

1990 1995 2000 2005 2010 2015
Year

c
o

u
n

t

structure
BNF
Intermediate
JSON
Other
Simple
XML

Fig. 4: New format origination dates (count gives the averaged

number per year for a type of format).

Some formats allow meta-data through unstructured com-

ments. This is better than nothing, but lack of structure

of the comments means these are not machine readable,

in general.

Some file formats provide only a limited range of meta-

data fields, whereas others are arbitrarily extensible. Fig-

ure 5 shows support for various types of meta-data in the

formats.

The value of meta-data is clear, but once again, let

us reiterate that there are pros and cons in different

approaches. For instance, arbitrary meta-data may seem

superior, but can then lead to ambiguity about what meta-

data should be kept for each dataset, whereas having

a fixed list of attributes can make it obvious what is

expected. However, it is common for formats to have

support downwards, e.g., formats with fixed attributes

often also support comments, and those with arbitrary

properties often support some set of fixed properties and

comments.

built-in compression : It is easy enough to compress a graph-

file using common utilities such as gzip, and typical

compression ratio will be reasonably good as graph files

often have many repeated strings. However, one format

(BVGraph) provides for compression of the graph as it

is written, in much the way image file formats allow

intrinsic compression of the image.

Graph Compression algorithms have been a topic of study

at least since 2001 [13]–[15], with numerous follow-ups.

So it is interesting that only one format is designed around

this feature. However, two other formats provided some

crude mechanisms to reduce the size of the file. Finally

the DGS (the Dynamic GraphStream) format [16] for-

mally acknowledges the role of compression by requiring



Integral Metadata
arbitrary
comments
fixed
no

Fig. 5: Support for meta-data.

Directed
DAG
directed
either
either or tree
either/bipartite
mixed
planar
undirected
unspecified

Fig. 6: Graph type support.

that a gzipped file be accepted by software reading its

format.

graph types supported : As earlier noted there are many

generalisations and subtypes of graphs that could be sup-

ported here: directed vs undirected, multi-graphs, hyper-

graphs, meta-graphs, trees, DAGs, etc. Figure 6 shows

the complexities of the issues involved by level of support

just for directed graphs and their subtypes (either refers to

either directed or undirected, and mixed allows a mixture

of directed and undirected edges).

hierarchy : It is common for graphs to have sub-structure,

for instance nodes that themselves contain graphs.

Several formats provide mechanisms to record this sub-

structure. Unfortunately, there does not seem to be a

consistently used definition of this type of structure [17],

and so we see differences not just in the representation,

but also what exactly is being represented. The problem

becomes even more complicated when hierarchy and

hyper-graphs are combined [12] (there is at least one

proposed solution [17] but it does not seem to be widely

used yet).

Here, we simply note whether the format provides a

version of hierarchy.

attribute support : A very common requirement is to store

Multiple attributes
almost
arbitrary
fixed
no

Fig. 7: Attribute support.

sets of values associated with an edge, or node. We

describe the level of support as arbitrary (where arbitrarily

named attributes can be added) or fixed (where only a set

of pre-defined attributed are allowed). Figure 7 shows the

proportions that allow each type. Some formats also allow

a single numerical weight to be attached to an edge (see

Figure 8 for the proportion).

temporal data/dynamics : A topic of interest is analy-

sis/visualisation of graphs as they change [9]. One way to

store this information is as a series of “snap-shot” graphs,

but storing it all together in the same file has some appeal.

A few formats provide some variant on this: allowing

links or nodes to be given a lifetime, or proving “edits”

to the graph at specific epochs.

extensible : Some formats allow extensibility in varying

forms. We only consider them to have this facility, how-

ever, if they provide an explicit mechanism. For instance,

we do not regard all XML derivatives as intrinsically

extensible because they could, in principle, be extended

using standard XML techniques. The format has to ex-

plain the explicit mechanism whereby it is extended.

Simply adding extra attributes is not considered extensi-

bility.

schema checking : A format that provides an explicit mech-

anism to check that a file is in a valid format is useful.

We only say it has this facility if a tool exists to perform

the check (a schema-checking program, DTD, or other

similar formal tool).

checksums : It is possible for large data files to become

corrupted. A common preventative (or at least check for

this problem) is to use a checksum. This is possible

for all files, but we say that a given format has this

capability if it includes it as a internal component (usually

checking everything except the checksum itself). Only a

few formats contain this check.

multiple graphs : Some formats allow multiple graphs to be

held in one file. Again, we only count this as a feature if

the specification explains how explicitly.

To explore, we look at each level and calculate the pro-

portion of formats supporting the features. This is plotted in



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

multiple attributes

edge edge

built in compression

checksums

multiple inheritance

incremental specifications

temporal data dynamics

external data references

ports

hyper graph

multiple graphs

default values

extensible

multi graph

hierarchy

schema checking

checked

visualisation data

edge weights

constructive

procedural

smatrix

matrix

neigh

edge

g
e
n
e
ra

l a
ttrib

u
te

re
p
re

s
e
n
ta

tio
n
 ty

p
e

0.0 0.2 0.4 0.6

Proportion with attribute

Fig. 8: Proportion of each feature in the data formats.

Figure 8. Note that in regard to features with multiple answers

(e.g., representation), we break the possibilities into categories

and list the proportion that support each category.

V. OTHER ISSUES

A. Software Support

An important issue in choosing an exchange format is how

many software tools support the format. The list of potential

software is long, even more so than the list of formats, so

we won’t try to survey them here as well. Instead we refer

readers to [2], which contains a cross-section of both formats

and their software support.

A common conclusion amongst those who look at graph

file support in software is that GraphML and Pajek are the

best supported in modern systems, but they are by no means

universal or even supported by the majority of tools.

B. Public DB support

The other type of support we might wish to see is general

support amongst those who provide data publicly. There are

many public databases that provide example networks for

benchmarking or research. We provide a list in [8] of some of

the better known of these with their format choices. Additional

data sources are listed in [18], and a detailed taxonomy and

examples of computer-network data appears in [19].

There is no clear winner here: slightly preferred is a

variant of the Trivial Graph Format due to its least-common-

denominator status (but note that this isn’t really one format, so

much as a collection of equivalent formats). Overall, however,

the formats seem to be written for the data rather than the other

way around. That, in itself, is an illustration of the problem.

C. Discussion

We said at the start that we would distinguish this study

from that of the graph databases, and that steers the dis-

cussion towards features related to portability. However, the

consideration of these formats inevitably leads to the question

of what is currently missing. Apart from support of new

graph generalisations and other features discussed above, the

main features that are missing are those that might reasonably

come from the database field. For instance, at present the vast

majority graph exchange formats assume that the data will be

read into memory in its entirety. As datasets become larger this

may not be possible, and so exchange formats that support

more advanced features such as subdivision of the data, or

random access queries on the data, may be preferable.



VI. CONCLUSION

The science of graphs and networks needs portable, well-

documented, precisely-defined, exchange formats. There are

many existing formats, and this paper seeks to unravel this

mess, most notably with the aim of reducing the number of

new formats developed.

One size probably does not fit all though. There is a clear

need for at least three major types of file format:

• a general, flexible, extensible approach such as GraphML;

• a quick and dirty approach that satisfies the least common

denominator for the exchange of information to/from the

simplest software; and

• a very efficient (compressed) format for very large graphs.

In the context of big data, the last type of format is the most

interesting, The only true example of a compressive format is

BVGraph does not allow attributes, so this points to a new

area of research, namely the design of formats that work in

conjunction with graph compression algorithms.

ACKNOWLEDGEMENTS

This work was supported by ARC grant DP110103505,

and by the ARC Centre of Excellence for Mathematical &

Statistical Frontiers.

Many people have contributed to improve the quality of

information presented here; specific thanks go to Andreas

Winter, Andy Schürr, Brendan McKay, Danny Bickson, Ivan

Herman, Kevin Kawkins, Mason Porter, Michael Himsolt,

Peter Mucha, Rok Sosic, Sebastian Mueller, Skye Bender-

deMoll, Syd Bauman, Sébastien Heymann, Tels, Ulrik Bran-

des, Vladimir Batagelj, Bruce Hendrickson, David Gleich,

Young Hyun, Antoine Dutot, Rose Oughtred, the BioGRID

Administration Team, and David Krackhardt.

REFERENCES

[1] R. Angles and C. Gutierrez, “Survey of graph database models,”
ACM Computing Surveys (CSUR), vol. 40, no. 1, pp. 1:1–1:39, Feb.
2008, http://dl.acm.org/citation.cfm?id=1322433. [Online]. Available:
http://doi.acm.org/10.1145/1322432.1322433

[2] J. Bodlaj, “Network data file formats,” 2013, http://link.springer.com/
referenceworkentry/10.1007/978-1-4614-6170-8 298.

[3] M. Bernard, “Graph file formats,” www2.sta.uwi.edu/∼mbernard/
research files/fileformats.pdf.

[4] S. Bender-deMoll, “Netwiki: Data formats for representing networks,”
2010, http://netwiki.amath.unc.edu/DataFormats/Formats.

[5] “yWorks Developer’s Guide: input and output,” 2014, http://docs.
yworks.com/yfiles/doc/developers-guide/io.html.

[6] “Gephi: Supported graph formats,” http://gephi.github.io/users/
supported-graph-formats/.

[7] U. Brandes, M. S. Marshall, and S. C. North, “Graph data format
workshop report,” in 8th International Symposium on Graph Drawing,
2000, pp. 410–418.

[8] M. Roughan and J. Tuke, “Unravelling graph-exchange file formats,”
March 2015, http://arxiv.org/abs/1503.02781.

[9] J. Ebert, “A versatile data structure for edge-oriented graph algorithms,”
Computing Practices, vol. 30, no. 6, pp. 513–519, 1987.

[10] E. Parsonage, H. X. Nguyen, R. Bowden, S. Knight, N. J. Falkner,
and M. Roughan, “Generalized graph products for network design and
analysis,” in 19th IEEE International Conference on Network Protocols

(ICNP), Vancouver, CA, October 2011.

[11] V. Batagelj and A. Mrvar, “Towards NetML: Networks markup lan-
guage,” in International Social Network Conference, London, July 1995,
vlado.fmf.uni-lj.si/pub/networks/netml/snetml.pdf.

[12] M. Kivelä, A. Areanas, M. Barthemlemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, “Multilayer networks,” Journal of Complex Networks,
vol. 2, pp. 203–271, 2014.

[13] M. Adler and M. Mitzenmacher, “Towards compressing web graphs,”
in Data Compression Conference (DCC). Washington, DC, USA:
IEEE Computer Society, 2001, pp. 203–212. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882454.875027

[14] K. H. Randall, R. Stata, J. L. Wiener, and R. G. Wickremesinghe,
“The link database: Fast access to graphs of the Web,” in
Data Compression Conference (DCC). Washington, DC, USA:
IEEE Computer Society, 2002, pp. 122–131. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882455.874988

[15] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Thirteenth World-Wide Web Conference, 2004, pp. 595–
601.

[16] “The DGS file format specification,” http://graphstream-project.org/doc/
Advanced-Concepts/The-DGS-File-Format 1.1/.

[17] D. Bildhauer and J. Ebert, “DHHTGraphs - modeling beyond plain
graphs,” in IEEE ICDE Workshop, 2011, pp. 100–105, http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=5767620&tag=1.

[18] M. Cerinsek and V. Batagelj, “Sources of network data,”
in Encyclopedia of Social Network Analysis and Mining,
R. Alhajj and J. Rokne, Eds. Springer New York, 2014,
pp. 1946–1954, http://link.springer.com/referenceworkentry/10.1007%
2F978-1-4614-6170-8 313. [Online]. Available: http://dx.doi.org/10.
1007/978-1-4614-6170-8 313

[19] G. D. Battista and M. Rimondini, Handbook of Graph Drawing and

Visualization. CRC Press, June 2013, ch. Computer Networks, pp.
763–803, http://cs.brown.edu/∼rt/gdhandbook/.

http://dl.acm.org/citation.cfm?id=1322433
http://doi.acm.org/10.1145/1322432.1322433
http://link.springer.com/referenceworkentry/10.1007/978-1-4614-6170-8_298
http://link.springer.com/referenceworkentry/10.1007/978-1-4614-6170-8_298
www2.sta.uwi.edu/~mbernard/research_files/fileformats.pdf
www2.sta.uwi.edu/~mbernard/research_files/fileformats.pdf
http://netwiki.amath.unc.edu/DataFormats/Formats
http://docs.yworks.com/yfiles/doc/developers-guide/io.html
http://docs.yworks.com/yfiles/doc/developers-guide/io.html
http://gephi.github.io/users/supported-graph-formats/
http://gephi.github.io/users/supported-graph-formats/
http://arxiv.org/abs/1503.02781
vlado.fmf.uni-lj.si/pub/networks/netml/snetml.pdf
http://dl.acm.org/citation.cfm?id=882454.875027
http://dl.acm.org/citation.cfm?id=882455.874988
http://graphstream-project.org/doc/Advanced-Concepts/The-DGS-File-Format_1.1/
http://graphstream-project.org/doc/Advanced-Concepts/The-DGS-File-Format_1.1/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5767620&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5767620&tag=1
http://link.springer.com/referenceworkentry/10.1007%2F978-1-4614-6170-8_313
http://link.springer.com/referenceworkentry/10.1007%2F978-1-4614-6170-8_313
http://dx.doi.org/10.1007/978-1-4614-6170-8_313
http://dx.doi.org/10.1007/978-1-4614-6170-8_313
http://cs.brown.edu/~rt/gdhandbook/

