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6. ERROR: A really big FUCK UP has been detected !!

189 Funny UNIX Error Messages

http://www.fsckin.com/2007/09/24/189-humorous-unix-errors/
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Redundancy is your friend

We’ve talked about redundancy as a method to help avoid errors
I English does this as a matter of course
I Not well enough for really noisy mediums (e.g., some radio)

F e.g. its hard to tell ’N’ from ’M’

I Nato Phonetic Alphabet

letter code
A alpha
B bravo
C charlie
D delta
F foxtrot
...

...

I Or we could use repetition.

What we need is a way to do this efficiently.
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Error Correcting Codes (ECC)

Redundancy is your friend

Complete alphabet (also know as International Radiotelephony Spelling
Alphabet or the ICAO phonetic) is at
http://en.wikipedia.org/wiki/NATO_phonetic_alphabet.

Note that words come with expected pronunciation, e.g. “nine” is said
“NIN-ER”.

It has problems

Bob: What’s that again?
Alice: I said, I have to tell you about Mike.
Bob: Didn’t get the last word Alice, can you spell it out?
Alice: Mike India Kilo Echo.
Bob: Got India Kilo Echo, what was the first word?
Alice: Mike
Bob: Can you spell that?
Alice: Mike India Kilo Echo

...

The Alice and Bob After Dinner Speech,
John Gordon, 1984

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 10, 2013 6 / 45

It has problems

Bob: What’s that again?
Alice: I said, I have to tell you about Mike.
Bob: Didn’t get the last word Alice, can you spell it out?
Alice: Mike India Kilo Echo.
Bob: Got India Kilo Echo, what was the first word?
Alice: Mike
Bob: Can you spell that?
Alice: Mike India Kilo Echo

...

The Alice and Bob After Dinner Speech,
John Gordon, 19842

0
1

3
-1

0
-1

0

Information Theory

Error Correcting Codes (ECC)

It has problems

http://downlode.org/Etext/alicebob.html

http://en.wikipedia.org/wiki/NATO_phonetic_alphabet
http://downlode.org/Etext/alicebob.html


Error Detection and Correction

Two main approaches:

Error Detection
I use a few extra bits to detect when there is an error
I retransmit errored data

FEC - Forward Error Correction (sometimes called channel coding)
I use coding to create unambiguous codewords that can be transmitted

with arbitrarily small errors

We’ll see that they are pretty closely related.
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Error Detection

Include some extra bits to check for errors

Various approaches.

Parity bits

Checksums

Hash functions
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Error Detection

Earliest example: the Torah. Jewish scribes copying the Torah tried to

make copies perfect. Used techniques such as summing numbers of

words per line, and per page, and checking certain words. A page was

thrown out if a single mistake was found, and three mistakes on a single

page invalidated the entire text.

Parity Bits

write data in binary: 10101011

calculate the parity, i.e., is the sum even or odd, using addition
modulo 2

1 + 0 + 1 + 0 + 1 + 0 + 1 + 1 = 1 (mod 2)

add the extra parity bit on the end, e.g.
101010111

if parity is wrong after trans., we know there was at least one error
I but two errors may cancel each other out

we could add extra parity bits to detect other errors
I e.g., take a parity bit for whole sequence, and also for blocks length 4

1 + 0 + 1 + 0 + 1 + 0 + 1 + 1 = 1 (mod 2)

1 + 0 + 1 + 0 = 0 (mod 2)

1 + 0 + 1 + 1 = 1 (mod 2)

and the new sequence is
10101011101

I Now we can detect 2 bit errors, as long as they don’t happen in the
same sub-block
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Parity Bits

General form of parity bits from [Gal68, p.197] is that we take a binary
signal u of length K and create a new signal x of length N > K by taking

xn =

{
un, for 1 ≤ n ≤ K ,∑L

i=1 uig
(n)
i , for K + 1 ≤ n ≤ N.

where summation is modulo 2.

� the 1st K bits of x are called information bits, or the message

� the N − K bits at the end are called parity bits or check digits

We will consider parity checks a little more further along. For the

moment, remember that there can be errors in the parity bits as well as

the message. So increasing the number of parity bits carelessly might be

counter-productive, as well as inefficient. We need to be systematic

about it.



Parity Bits and Errors

Given n bits in a message block + parity bits, and a BSC (Binary
Symmetric Channel) with error probability p

Probability of m errors is binomial

P(#errors = m) =

(
n

m

)
pm(1− p)n−m

For small p (and reasonably large n) we can approximate this by
Poisson distribution

P(#errors = m) ' e−np(np)m

m!

I P(0) ' e−np ' 1− np + (np)2/2
I P(1) ' kpe−np ' np(1− np)
I P(> 1) = 1− P(0)− P(1) ' (np)2/2
I P(> 2) ' (np)3/6
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Imagine a message size of 4, and we will compare adding 1 parity bit
(which can detect 1 errored bit) with 3 parity bits (which we will show
allows us to detect when there are up to 2 errors in any of the bits).
So the probability of an undetectable error for 1 and 3 extra bits is

P(> 1|n = 5) ' 52

2
p2 ' 12.5p2

P(> 2|n = 7) ' 73

6
p3 ' 57.16p3

so clearly the decision about whether to use a single parity bit, or the

three bits, depends on p. For small p, obviously the second approach

wins, but for p > 12.5/57.16 ' 0.21 we might be better with just a

single parity bit, because the potential for errors in the extra two bits

overcomes their error checking capacity.

Parity Bits Example

assume a typical optical fibre as a BSC with BER α = 10−12

Max standard TCP/IP packet is 1500 bytes = 12,000 bits

np = 1.2× 10−8

Certainly satisfies requirements for Poisson approximation

P(1) ' np ∼ 1.2× 10−8

P(> 1) ' (np)2/2 ∼ 0.7× 10−16

P(> 2) ' (np)3/6 ∼ 0.3× 10−24

So we might feel safe checking for single errors
I but not all internet wires are that good
I wireless certainly isn’t
I some packets are bigger
I the Australian Internet will carry about 1 exabyte per month by 2016 –

we are starting to get to the point where 2 errors could just happen
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Checksums

Checksums generalise the idea of parity bits
I create a “sum” of message codewords

F fixed length blocks of binary bits

I include the checksum in the data
F by appending, or including in a header

Modular sum
I break into blocks length n
I perform sum modulo 2n

I detects single bit errors
I 2 bit errors go undetected with probability < 1/n
I misses correlated errors, e.g., block transposition

Cyclic Redundancy Checksum (CRC)
I include position as well as value
I based on generator polynomial
I perform arithmetic on finite field GF (2)
I n-bit CRC when its check value is n bits
I deal well with burst errors (which are common)
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Galois Field GF (2) is the just the finite field of single binary digits:

� addition is just the logical XOR (or addition mod 2)

� multiplication is just the logical AND (or binary multiplication)

In general we could have GF (q), for an alphabet q, where the operations
are addition and multiplication mod q, as long as q is prime or a prime
power.

Examples
UPC barcodes: generalise parity to 10 digits

http://en.wikipedia.org/wiki/Universal_Product_Code

UPC-A has 12 (decimal) digits

digits represented by bar widths/patterns

parity of patterns used to indicate left/right so can scan from either
direction
check digit UPC-A barcode ”780521873109”

I add odd-numbered digits times 3, and add event digits
I modulo 10, then complement

9 = 10−
[
(7 + 0 + 2 + 8 + 3 + 0)×3 + (8 + 5 + 1 + 7 + 1 + 9) mod 10

]
there are other bar code standards, but this is a common one
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� it should detect any single error because an error multiplied by three mod 10
should cause a change in the check digit

– think of the ×3 as weights on odd positioned numbers
– we need to use weights w = 1, 3, 7, 9 so that ew 6= 0 mod 10

for any error e
– if we used mod 11 arithmetic (11 is prime) we could use all the

weights (use X to represent 10)

� won’t necessarily detect two errors, as they could easily cancel out

� different weights of the odd and even numbers is to detect a digit
transposition error (where two adjacent numbers are swapped).

http://en.wikipedia.org/wiki/Universal_Product_Code
http://en.wikipedia.org/wiki/Universal_Product_Code


CRCs
Generator Polynomials

Generator polynomial is n-degree polynomial over GF (2)

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

over finite field GF (2) so
I coefficients ai ∈ {0, 1}
I addition means XOR
I multiplication means AND

Representation can be binary numbers anan−1 . . . a0
I n + 1 coefficients, but an must be one, so is omitted
I same confusions as for binary, e.g., least-sig. vs most-sig. bit first
I can be written as hexadecimal

Selection of generator is critical
I good examples exist for n = 8, 16, 32, 64

e.g., CRC-4-ITU = 10011 = 1x4 + 0x3 + 0x2 + 1.x + 1 = x4 + x + 1

x(0) = 0 + 0 + 1 = 1

x(1) = 1 + 1 + 1 = 1

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 10, 2013 15 / 45

CRCs
Generator Polynomials

Generator polynomial is n-degree polynomial over GF (2)

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

over finite field GF (2) so
I coefficients ai ∈ {0, 1}
I addition means XOR
I multiplication means AND

Representation can be binary numbers anan−1 . . . a0
I n + 1 coefficients, but an must be one, so is omitted
I same confusions as for binary, e.g., least-sig. vs most-sig. bit first
I can be written as hexadecimal

Selection of generator is critical
I good examples exist for n = 8, 16, 32, 64

e.g., CRC-4-ITU = 10011 = 1x4 + 0x3 + 0x2 + 1.x + 1 = x4 + x + 1

x(0) = 0 + 0 + 1 = 1

x(1) = 1 + 1 + 1 = 1

2
0

1
3

-1
0

-1
0

Information Theory

Error Detection

CRCs

e.g., CRC-16-CCITT, used in many transmission protocols

x16 + x12 + x5 + 1

In hex: 0x1021 (NB: the first bit must be 1, so don’t need to represent it)
In binary: 1 0001 0000 0010 0001

e.g., CRC-32 used for Ethernet (and many others)

x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 +x8 +x7 +x5 +x4 +x2 +x +1

CRCs
Polynomial division

Computation of CRC corresponds to division (in GF (2)), so we are
trying to determine Q(X ) and R(X ) such that

M(x) · xn = Q(x) · G (x) + R(x)

where
I M(x) · xn is the original message (as a polynomial) with n zeros added

at the end.
I G (x) is the generator polynomial
I Q(x) is the “quotient” polynomial, which we don’t care about
I R(x) us the “remainder” polynomial, whose binary representation is

the CRC

Calculation is like doing long-division
I except no carries
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One nice thing about CRCs is that they can easily be implemented in
hardware, so, e.g., routers that have only nanoseconds to process a
packet can compute a CRC for every packet.

n-bit CRC applied to a data block of arbitrary length will detect any
single error burst not longer than n bits and will detect a fraction 12n of
all longer error bursts. They have other complicated error detection
capabilities, beyond our scope.



CRCs

Q(x) 01010110

_____________________Q(x)_____________

x^n M(x) 0101011100000000

-000000000 0

= 101011100000000

-100000111 1

= 01011011000000

-000000000 0

= 1011011000000

-100000111 1

= 011010110000

-000000000 0

= 11010110000

-100000111 1

= 1010101100

-100000111 1

= 010100010

-000000000 0

R(x) = 10100010 = CRC
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8 bit CRC-8-ATM of the 8 bit ASCII code for ’W’ = 8710 = 010101112

Input message = 01010111

Polynomial = 100000111 = x8 + x2 + x + 1

We just subtract multiples of 1 or 0 times the polynomial from the

message, but we don’t carry, so we effectively “borrow from infinity”

Assignment

1 Implement a CRC calculator that allows you to input an arbitrary
message and polynomial.

2 Calculate the CRC-8-ATM of the 8 bit ASCII codes for the following
message:

The rain in spain falls mainly on the plane.
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Assignment

NB: Matlab has its own CRC routines, but I want you to write your own.

You can, however, use Matlab’s to check your work.



Hash Functions

Hash Functions are used in
I creating hash tables (associative arrays implemented this way)
I cryptography
I to create checksums

Random hash functions have several properties:
I ideally they would be random oracles

F their output for a given input is always the same
F it is ideally random, uniformly over output domain
F you can’t tell the input from the output, so its one way

I collision resistance
F hard to find two inputs that hash to the same output
F can provide protection against intentionally changed data

I fixed length output for input message of arbitrary length

CRCs don’t achieve these properties

Examples
I MD5 (message-digest) [Riv92]
I SHA-2 (set of hash functions)
I lots of others
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Hash Functions

No real function is really an random oracle, but the concept is often used
in proofs of security when these functions are used cryptographically.

See the birthday-paradox for the problem of collisions.

Incidentally, think about the entropy of the resulting hash if included in a
message as a checksum?

Hash Function Example: MD5

MD5 (message-digest) [Riv92]

input: message of arbitrary length

output: 128 bits
I digest (or summary) of the message

basic
I designed for 32 bit machines
I uses 4 x 32 bit buffers
I defines 4 x bitwise-parallel operations (functions)
I uses 64 element table: T [i ] = b232 × |sin(i)|c, for i in radians
I repeat a complex set of the above on 16 x 32 bit word blocks of the

input

not cryptographically secure, but often used as check
I chance two messages produce same output is small, but not as small as

we would like (conjecture was 1 in 264 but actually there is a flaw)
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Retransmission

Two main ways of dealing with detected errors

Positive ACKs of all correct data
I all data must be ACK’d, or is assumed incorrect
I sender waits for a timer, and if doesn’t get an ACK back in that time,

automatically resends
I Example: TCP (Transmission Control Protocol) on the Internet

Negative ACK of errored data
I when receiver detects and error, it asks sender for a new copy
I makes more sense if delay is an issue (don’t have to wait for timeout)
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Retransmission

I have seen both called Automatic Repeat reQuest (ARQ), but it makes

more sense to use that term for the former.

Section 3

The Stack
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A Brief Introduction to the Stack

OSI model breaks functionality into layers called a protocol stack

Physical

Link

Network

Transport

Application

Physical

Link

Network

Link

Physical

Transport

Application

Network

Host BHost A

application protocol

transport protocol

network layer protocol

Intermediate
system

Session

Presentation

Session

Presentation
session protocol

presentation protocol

data−link layer protocol

physical layer protocol
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A Brief Introduction to the Stack

Additional references:
http://www.geocities.com/SiliconValley/Monitor/3131/ne/

osimodel.html

http://www2.rad.com/networks/1994/osi/layers.htm

http://www.webopedia.com/quick_ref/OSI_Layers.asp

http://en.wikipedia.org/wiki/OSI_model

Layered protocols: OSI model

Somewhat like subroutines in programming
I Each layer provides services (functions) to higher layers
I Function call interface hides details of how the service is provided
I e.g. network layer asks link layer to transport a packet across a link,

without any network details
I the interface is well defined

Benefits
I reduction in complexity
I reuse of functionality

F may be many applications on one session layer

Communications between peers using protocols
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Encapsulation

Lower layers deal with higher layer by

treat information from higher layer as “black box”.
I don’t look inside data
I just treat as bunch of bits

allowed operations on the data
I just break data into blocks
I encapsulate the blocks, by adding

F headers (e.g. addresses)
F trailers

when passing back to higher
I layers strip headers
I join blocks back together
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Encapsulation

Layer 1: Physical layer

Function: Transmission of raw bit stream between devices.
Services: Physical connection, Binary modulation, frequency, ...
Issues: # pins/wires, duplex, serial/parallel, modulation, ...
Media:

copper wire: e.g. coax, twisted pair (CAT-3/CAT-5), RS-232, USB

lasers (fibre optics)

lasers (free air)

microwave, RF, satellite, ...

infra-red

carrier pigeons (RFC 1149) ;-)
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Layer 2: Data-link layer

Function: provide reliable transport of information between a pair of
adjacent nodes.
Services: creates frames/packets, error control, flow control
Issues: Medium Access Control (MAC), headers/trailers, ...
Examples:

Ethernet

Token-ring

IEEE 802.11 (Wi-Fi)

FDDI (Fiber Distributed Data Interface)

ATM (Asynchronous Transfer Mode) (also layer 3)

POS (Packet over SONET)

PPP (Point to Point Protocol)
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Layer 2: Data-link layer

Layer 3: Network layer

Function: forwarding packets from end-to-end
Services: packet forwarding, some congestion control
Issues: determining what routing to use
Examples:

IPv4 (Internet Protocol version 4)

IPv6 (Internet Protocol version 6)

ARP (Address Resolution Protocol)

ATM (Asynchronous Transfer Mode) (also layer 2)

Routing protocols (e.g. OSPF, IS-IS, RIP, EIGRP)
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Layer 4: Transport layer

Function: reliable end-to-end transport of data
Services: multiplexing, end-to-end error and flow control
Issues: congestion control algorithm
Examples:

TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)

SCTP (Stream Control Transmission Protocol)

RTP (Real-time Transport Protocol)
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Layer 4: Transport layer

Layer 5: Session layer

Function: combine logically connected transmissions
Services: group several connections into a session
Issues: what to use it for?
Examples:

NFS = Network File System

SMB = Server Message Block
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Layer 6: Presentation layer

Function: specific regularly requested functions.
Services: encryption, compression, ...
Issues: want to do compression before encryption, but compression may
be done by a lower layer (see coding theorems later on)
Examples:

SSL (Secure Sockets Layer) (at a stretch)
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Layer 6: Presentation layer

Layer 7: Application layer

E-mail (POP, IMAP, SMTP)

File transfer (FTP — File Transfer Protocol)

Remote terminal (Telnet, SSH, ...)

WWW (HTTP — Hyper-Text Transfer Protocol)

File sharing (Gnutella, Napster, Kazaa, ...)

Video conferences

Newsgroups

NTP (Network Time Protocol)

VoIP (Voice over IP)

Games (Quake, MMORP, ...)

RFC 2324: Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)
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Post office analogy

We could describe snail-mail using OSI model
e.g. sending mail to my mum.

Physical

Link

Network

Transport

Application

Physical

Link

Network

Link

Physical

Transport

Application

Network

Session

Presentation

Session

Presentation

write a

pen and paper

letter

more than one
piece of paper

mailbox

postman
picks it up

Postoffice

address

envelope

My MumMy House

Data Flow

post truck/airplane

put in the right delivery bin

examine address and forward toward destination

lick and stick/letter opener

page numbers

english
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Post office analogy

Another example “James Bond Meets The OSI Model” is given at

http:

//www.lewistech.com/rlewis/Resources/JamesBondOSI2.aspx

TCP/IP has 5 “layers”

Link Layer (e.g. Ethernet, ATM, POS)

Physical layer (e.g. CAT−5, SONET, ...) 

Network layer (IP)

Transport (TCP, UDP) 

Applications (WWW,e−mail,telnet, ...)

ICMP

ARP
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TCP/IP Encapsulation

data segment

TCP segment

IP packet

Ethernet frame

Application message

TCP hdr

IP data

Ethernet hdr Ethernet data

IP hdr

TCP data
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TCP/IP Encapsulation

IP header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Fragment OffsetIdentification

Header Checksum

Options

IP data

Padding

Destination IP Address

Source IP Address

Protocol

ToS Total LengthVers

Flags

Time to Live

IHL

optional
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TCP header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Options Padding

Destination PortSource Port

TCP data

Sequence number

Acknowledgement number

Receive Window
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Offset
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TCP header

TCP/IP operation

IP module

LNI−2 LNI−3

router router

computer 1 computer 2

IP module

LNI−1

Local Network 1
(Ethernet)

Local Network 2 Local Network 3

LNI−1

IP module

LNI−2

IP module

LNI−3

(Ethernet)(POS)

TCP module

Application

TCP module

Application

LNI = Local Network Interface

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 10, 2013 38 / 45

TCP/IP operation

IP module

LNI−2 LNI−3

router router

computer 1 computer 2

IP module

LNI−1

Local Network 1
(Ethernet)

Local Network 2 Local Network 3

LNI−1

IP module

LNI−2

IP module

LNI−3

(Ethernet)(POS)

TCP module

Application

TCP module

Application

LNI = Local Network Interface2
0

1
3

-1
0

-1
0

Information Theory

The Stack

TCP/IP operation



TCP/IP operation

computer 1

router

IP module

LNI−1

TCP module

Application

LNI−1

IP module

application
layer

network

physical

layer

layer

transport
layer

link layer

Local Net 1

switch

Switch

Ethernet 
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TCP/IP operation

Narrow Waist of IP: hourglass

robustness against technological
innovations

anyone can innovate at either end
I new applications built by uni students (e.g.

netscape, napster, ...)
I new physical/link layers

allows huge heterogeneity

= success
Ethernet WDM

SONET WiFi RS−232

MicrowaveSatellite

carrier pigeons
infra−red

WWW
e−mail

Quake

Everquest
net−news

Gnutella

Kazaa

SNMP
NTP video

VoIP

FTP

SSH

ICMP

IP

Ethernet
POS,ATM,...

TCP/UDP
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Broken layering

TCP/IP layers are broken more often than not
ICMP – uses IP, but controls its operation

BGP is a routing protocol (IP layer), but is routed

IP over ATM over IP over ATM over SONET

anything involving MPLS

often services are provided at multiple layers: error and flow control,
e.g. error control in SONET (sort-of physical), link layer, IP, TCP, ...

OSI standards are too complicated

Q: What do you get when you cross a mobster with an international
standard?

Paul Mockapetris
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What’s best?

The best approach depends on the “natural” block length and BER

e.g., TCP/IP
I many links have very low error rates (BER might be 10−12)
I TCP/IP packets are 40-1500 bytes (typically)

F checksums are in the headers (extra stuff added to data, like addresses)

I IPv4 packets only have a checksum for header, not data
F 1’s complement of 1’s complement of sum of heads 16 bit words (by

default there are 20 octets or 10 x 16 bits words) )
F calculated as if checksum bytes were zero
F must be recalculated at each hop as TTL changes
F packets that fail are discarded (IP is best effort only)
F 16 check bits out of 160 bits – fairly strong checking, but only of header

I TCP adds 16 bit CRC checksum for header and data, and does
retransmission of errored packets

F pretty “weak” (16 bits out of potentially 12000)
F only makes sense for low error rates
F see link-level (e.g., Ethernet) below
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What’s best?

The best approach depends on the “natural” block length and BER

e.g., Ethernet
I Ethernet goes over many mediums (copper, optical fibre)
I Frames are ≤ 1514 bytes
I 32-bit CRC (CRC-32)
I generator polynomial

x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 +x8 +x7 +x5 +x4 +x2 +x+1

I longer checksum than TCP
F TCP/IP packets encapsulated in Ethernet (often)
F link-level reliability is enhanced (underlying BER is still assumed to be

fairly low)
F TCP checks are mainly looking for (hopefully) rare cases where

something goes wrong end-to-end, so it doesn’t need to be as strict

I just to complicate things: applications may have further checks on
integrity of messages.
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What’s best?

The best approach depends on the “natural” block length and BER

e.g., Deep space communications
I low signal to noise ratio (SNR), so there is a large BER
I high delays (minutes, due to speed of light delay)
I resending every time a single bit is bad would be unworkable

in this case we need something better than error detection

other cases:
I when there is no reverse channel

F e.g., storage (such as CDs)
F e.g., broadcast or multicast (e.g. digital TV)

I channel is expensive, e.g., physical transport
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

Robert G. Gallager, Information theory and reliable communication, John Wiley
and Sons, 1968.

David J. MacKay, Information theory, inference, and learning algorithms,
Cambridge University Press, 2011.

R. Rivest, The MD5 message-digest algorithm, IEFT RFC 1321, April 1992,
http://tools.ietf.org/html/rfc1321.
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