Assignment 2: Due Thursday 21st March at 5pm

Late assignments will not be accepted except by prior arrangement (for a good reason)

Please include your student number in your handed up work, as Canvas doesn't give

 this to me automatically.1. Use your existing code to read in (the 6 node) directed graph specified as an edge list in TGF (Trivial Graph Format). At
https://roughan.info/notes/Network_Modelling/10data.html
you will find a second data file a1010101_graph_A2.tgf (in the same format) for you to apply this to. Note that the input is a multi-graph in that edges can appear more than once, and self-loops are allowed.
(a) Write a function to calculate the in- and out-degree of each node.
(b) Write a function that performs a recursive depth-first search to find a node with out-degree 0 , or returns Inf (or something similar), if it can't find one. Start at node 1, and where there are alternative "next-hop" nodes, always search them in order from lowest to highest.
Ensure to output the results of your code on your test input file.
2. (a) Derive the computational complexity of the Eulerian cycle algorithm described in lectures.
(b) Write code to find an Eulerian walk in a directed graph using the files given above. Note that the input is a multi-graph in that edges can appear more than once, and self-loops are allowed.
3. Assemble the following "reads" into a complete genome. The number gives the multiplicity of each read (i.e., how often it occurred).

read	multiplicity
ACT	2
ATG	1
CTG	1
CTT	1
GAC	2
GGA	1
TGA	1
TGG	1
TTC	1

4. The originator of the de Brujin graph was interested in a topic other than genome sequencing. He was interested in universal sequences.
Take a set of symbols Ω, for example for a binary sequence we would take the symbols $\Omega=\{0,1\}$. A k-universal string is a string in which each possible k-mer appears exactly once as a sub-string. In fact, de Brujin wanted "circular" strings, which come back to their start as well.
So for the binary 3 -universal case, he would have the string

00011101

or any cyclic permutation of this string (note that we imagine the end joining up with the start.
(a) For a set Ω with $|\Omega|=n$ symbols, if it exists, how long would a k-universal circular string be?
(b) Given $\Omega=\{a, b, c\}$, use a de Brujin graph to construct a 2 -universal circular string.
[1 marks]

