Assignment 7: Due Thursday 23rd May at 5pm

Late assignments will not be accepted except by prior arrangement (for a good reason)
Please include your student number in your handed up work, as Canvas doesn't give this to me automatically.

1. Given a semiring $(S, \oplus, \otimes, \overline{0}, \overline{1})$, define $M_{n}(S)$ to be the set of square $n \times n$ matrices, with elements from S, such that

- $A \hat{\oplus} B$ is element-wise addition

$$
[A \hat{\oplus} B]_{i j}=a_{i j} \oplus b_{i j}
$$

- $A \hat{\otimes} B$ is the generalisation of standard matrix multiplication

$$
[A \hat{\otimes} B]_{i j}=\bigoplus_{k=1}^{n} a_{i k} \otimes b_{k j}
$$

- and identities of the form, e.g.,

$$
\mathbf{0}=\left[\begin{array}{ll}
\overline{0} & \overline{0} \\
\overline{0} & \overline{0}
\end{array}\right], \quad \mathbf{I}=\left[\begin{array}{cc}
\overline{1} & \overline{0} \\
\overline{0} & \overline{1}
\end{array}\right]
$$

Show that
(a) $\hat{\otimes}$ is associative; and
(b) idempotence of \otimes does not imply idempotence of $\hat{\otimes}$.
2. Write (computer) functions implementing \oplus and \otimes, i.e., oplus (A, B) and otimes (A, B) for $A, B \in M_{n}(S)$, where S is the Viterbi, or Max-times Semiring.
(a) Use your functions to find A^{*} (by fixed-point iteration or otherwise) the solution Y to the equation

$$
Y=(A \otimes Y) \oplus \mathbf{I}
$$

for

$$
A=\left(\begin{array}{llll}
0.0 & 0.3 & 0.9 & 0.1 \\
0.5 & 0.0 & 0.5 & 0.5 \\
0.9 & 0.2 & 0.0 & 0.1 \\
0.1 & 0.6 & 0.0 & 0.0
\end{array}\right)
$$

(b) Explain the meaning of this result.
(c) What does it mean that A^{*} is not symmetric?

