Complex-Network Modelling and Inference
 Lecture 4: Graph connectivity and traversal

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences, University of Adelaide

March 7, 2024

Section 1

Connectivity

Connectivity

Definition

Two nodes are connected if a path exists between them.

Definition

A graph is connected if all pairs of nodes are connected.

Definition

A strongly connected digraph is connected in the sense above, whereas a weakly connected digraph is connected if we include all reverse links.

Definition

A graph is k-edge connected if the graph remains connected after the removal of any set of $k-1$ edges, and k-node connected if the graph remains connected after the removal of any set of $k-1$ nodes.

Definition (Cut)

A cut is a partition of the nodes of a graph into two subsets $C=(S, T)$.

Definition (Cut-set)

The cut-set of a cut $C=(S, T)$ is the set of edges

$$
\{(u, v) \in E \mid u \in S, v \in T\}
$$

i.e., the edges that cross the cut.

Definition (Edge Cut)

An (minimum) edge cut is the minimum number of edges whose removal disconnects two nodes i and j, i.e., a minimal cut-set with $i \in S$ and $j \in T$.

Menger's theorem

Theorem (Edge-connectivity version)
For an undirected graph G, the size of the minimum edge cut for an arbitrary pair of nodes $i \neq j$ is equal to the maximum number of edge-disjoint paths from i to j.

- Edge-disjoint means they share no common edges
- There is also a node connectivity version
- It also works for digraphs and infinite graphs
- The theorem is generalised in many optimisation algorithms: e.g., maximum flow algorithms.

Connected Components

- A connected component is a maximal connected subgraph

- The set of connected components $\left\{C_{i}\right\}$ form a partition of the nodes

Definition (Partition)

A partition is a set of covering and disjoint subsets, i.e, $\left\{C_{i}\right\}_{i=1}^{n}$ is a partition of C iff

$$
\bigcup^{n} C_{i}=C \quad \text { and } \quad C_{i} \cap C_{j}=\phi, \quad \forall i \neq j
$$

Connected Components Algorithm

Data: A Graph $G=(N, E)$
Result: A set of connected components $\left\{C_{i}\right\}$
1 Initialise $N^{\prime}=N$;
2 while $\left(N^{\prime} \neq \phi\right)$ do
3 Choose a node $i \in N^{\prime}$ and delete it from N^{\prime};
$4 \quad$ Set $C_{i}=\{i\}$ and $L=\{(i, j) \mid(i, j) \in E\}$;
$5 \quad$ while $(L \neq \phi)$ do
6
Choose a link $(k, m) \in L$;
if $m \notin C_{i}$ then
add m to C_{i};
delete m from N^{\prime}; add all links $(m, I) \in E$ to L;
end
delete (k, m) from L;
end
14 end

Connected Components Example

Application 1

Key requirements for critical infrastructure networks (e.g., Internet, Water, Power, ...)

- Reliability

Application 1

Key requirements for critical infrastructure networks (e.g., Internet, Water, Power, ...)

- Reliability
- Reliability

Application 1

Key requirements for critical infrastructure networks (e.g., Internet, Water, Power, ...)

- Reliability
- Reliability
- Reliability

Application 1

Key requirements for critical infrastructure networks (e.g., Internet, Water, Power, ...)

- Reliability
- Reliability
- Reliability
- Cost

Application 1

Key requirements for critical infrastructure networks (e.g., Internet, Water, Power, ...)

- Reliability
- Reliability
- Reliability
- Cost
- Performance

Application 1

Key requirements for critical infrastructure networks (e.g., Internet, Water, Power, ...)

- Reliability
- Reliability
- Reliability
- Cost
- Performance
- Reliability

Application 1

The simplest definition of "reliability" used in networks is some variant of k-connectedness

- The particular variant depends on the failure modes of the network
- do the nodes fail, or the edges (or both)?
- Leads to network designs with redundancy
- not necessarily k-fold redundancy
- Is this a good enough definition of reliability

Application 2

Markov chains probability transition matrix

$$
P=\left(\begin{array}{llllll}
0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.5 & 0.0 & 0.8 & 0.4 & 0.2 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 \\
0.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.6 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.2 & 0.0 & 0.0 & 1.0
\end{array}\right)
$$

Application 2

Markov chains are described by a directed graph with self-loops, e.g.,

The transition matrix is just a weighted adjacency matrix.

Application 2

First step of studying a Markov chain is to check its properties

Definition

State i is accessible from state j if it is possible to get from i to j.
Accessible $=$ a path from i to j exists

Definition

A Markov chain is irreducible if it is possible to get to any state from any state.

Irreducibility $=$ strong connectivity of the graph

Definition

A communicating class is a maximal set of mutually accessible states.
Communicating class $=$ connected component

Section 2

Graph Traversal

- Connected components as described above has a little vagueness
- when I say "choose" how do you choose?
- It's an example of graph traversal
- where we want to visit each node of a graph (at least once)
- ordered nodes by connectivity
- Traversals used for lots of algorithms
- could be to search for an element
- or to calculate a value for each node

Maybe you don't have the whole graph stored in memory, but have to read bits, e.g., traversing Facebook graph

- There are two main strategies
- Depth-First Search
- Breadth-First Search
- For the sake of simplicity, we will assume graphs are connected
- Easiest to understand in neighbour-list representation

Depth-First Search

Visit a neighbour's children before you visit the next neighbour
1 Function $\operatorname{DFS}(G, i)$;
Input: A Graph $G=(N, E)$, and start node $i \in N$
2 label i as explored;
3 forall $j \in$ neighbourhood $\{i\}$ do
4 if j is unexplored then
5
6 $\operatorname{DFS}(G, j)$;
end
7 end

- We could make this faster by avoiding edges going backwards.
- At the moment the algorithm doesn't do anything
- a search also checks something about the node, and returns the first one that checks out
- but we might also do some sort of update
- or use to find a connected component ...

Breadth-First Search

Visit all neighbours before you visit their children

```
    1 Function BFS(G,i);
    Input: A Graph G = (N,E), and start node i N N
2 label i as explored;
3 create queue Q;
4 put i on Q;
5 while Q not empty do
6 take j off the front of Q;
7 forall }k\in\mathrm{ neighbourhood{j} do
8 if k is unexplored then
9
10
11
12
    end
13 end
```


Depth-First Search Example

Breadth-First Search Example

Further reading I

