Complex-Network Modelling and Inference

Lecture 7: Graph features

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences, University of Adelaide

March 7, 2024

Section 1

Graph features/metrics

Graph Notation

- The network is defined by the graph,

$$
G(N, E)
$$

- We will assume (unless stated) that it is undirected.
- By default label the nodes $\{1,2, \ldots, n\}$

Graph Features/Metrics

- When graphs are small, we can draw them, and look at them, and its still hard to assess them, e.g., isomorphism
- When they are large it is impossible to visually assess them
- But we still need ways to analyse them
- categorise
- predict
- assess for unusual characteristics
- There is a growing trend to do so using a common set of numbers called variously
- statistics
- metrics
- features

Graph Features/Metrics

There are two type of metrics/features

- Local (to the nodes)
- node degree
- local clustering coefficient
- centrality (various versions)
- eccentricity
- Local (to a pair of nodes)
- (shortest path) distance
- Global (for the whole network)
- average node degree and degree distribution
- radius, average distance and diameter
- global clustering coefficient
- assortativity/homophily
- graph spectrum

Section 2

Node degree distributions

Neighbourhood and node degree

Definition

The neighbourhood of node i is defined by

$$
N_{i}=\{j \mid(i, j) \in E\},
$$

i.e., the set of nodes adjacent to i.

Definition

The node degree k_{i} is the number of neighbours of node i, i.e.,

$$
k_{i}=\left|N_{i}\right| .
$$

Definition (Alternative definition)

The node degree k_{i} is the number of edges incident to i, i.e.,

$$
k_{i}=|\{(i, j) \mid(i, j) \in E\}| .
$$

Global node-degree statistics

- An often used statistic/feature of a graph is its average node degree

$$
\bar{k}=<k>=\frac{1}{|N|} \sum_{i \in N} k_{i}=\frac{2|E|}{|N|} .
$$

the last result by the Handshake theorem.

- More generally the node degree distribution p_{k} gives the probability that a node has degree k (or relative frequency)
- an r-regular graph has

$$
p_{k}= \begin{cases}1, & \text { for } k=r, \\ 0, & \text { otherwise }\end{cases}
$$

Friendship paradox [Fel91]

Friendship paradox $=$ your friends have more friends than you

- Actually the theorem is statement about averages "On average, your friends will have more friends than you."
- Stated mathematically

$$
E\left[k_{i}\right] \leq E\left[k_{\text {neighbours }(i)}\right]
$$

- Some versions are about "most" people, i.e., most people's friends have more friends than them
- Intuition is that sampling the node-degree distribution by looking at friends artificially biases the high-degree nodes because they are friends more often.

Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Friendship paradox

Proof.

The average number of friends is

$$
\bar{k}=\frac{1}{n} \sum_{i=1}^{n} k_{i}
$$

When we calculate the number of friends of friends $k_{i}^{(2)}$, Feld [Fel91] argued that each individual is "a friend k_{i} times and has k_{i} friends, so that individual contributes ... a total of k_{i}^{2} friends' friends". Thus the total friends' friends is

$$
\sum_{i=1}^{n} k_{i}^{(2)}=\sum_{i=1}^{n} k_{i}^{2}
$$

and we average this over the total number of friends, i.e., $\sum_{i} k_{i}$, to get

$$
\overline{k^{(2)}}=\frac{\sum_{i=1}^{n} k_{i}^{2}}{\sum_{i=1}^{n} k_{i}} .
$$

Friendship paradox

Proof.

Standard result

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Re-arranging we get

$$
\frac{\mathbb{E}\left[X^{2}\right]}{\mathbb{E}[X]}=\mathbb{E}[X]+\frac{\operatorname{Var}(X)}{\mathbb{E}[X]}
$$

In our context

$$
\overline{k^{(2)}}=\frac{\sum_{i=1}^{n} k_{i}^{2}}{\sum_{i=1}^{n} k_{i}}=\mathbb{E}\left[k_{i}\right]+\frac{\operatorname{Var}\left(k_{i}\right)}{\mathbb{E}\left[k_{i}\right]}
$$

and we know the mean and variance are ≥ 0 so

$$
\overline{k^{(2)}} \geq \bar{k}
$$

Friendship paradox

Proof (part 2)

- I find the first part a little hand-wavy
- There is a nice little lesson to learn in doing it mathematically

Proof.

We can write the number of friends of i using the adjacency matrix $A=\left[a_{i j}\right]$

$$
k_{i}=\sum_{j} a_{i j}=\sum_{j} a_{j i}
$$

We can similarly write the number of friends of friends for i using the adjacency matrix by considering that a friend j of i will be reached by $a_{i j}$, so

$$
k_{i}^{(2)}=\sum_{j} a_{i j} k_{j}
$$

An aside

The number i's friends' friends can be seen as

$$
k_{i}^{(2)}=\sum_{j} a_{i j} k_{j}=\sum_{j} a_{i j} \sum_{k} a_{j k}=\sum_{k} \sum_{j} a_{i j} a_{j k}
$$

Which is just the matrix squared, i.e., if $A^{2}=\left[a_{i j}^{(2)}\right]$ then we can think of this as

$$
a_{i k}^{(2)}=\sum_{j} a_{i j} a_{j k}=\text { the number of } 2 \text { hop paths from } i \text { to } j,
$$

and $k_{i}^{(2)}$ is the sum over the possible end-points of such paths.
The main point is A^{2} contains the number of two-hop paths between each pair of nodes.

An aside: example

Example directed graph

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Now

$$
A^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

So there are

- exactly one 2-hop path from 1 to 1: 1-3-1
- exactly one 2-hop path from 3 to 2: 3-1-2
- exactly one 2-hop path from 3 to 3: 3-1-3
- no other 2-hop paths

Friendship paradox

Proof.

$$
k_{i}^{(2)}=\sum_{j} a_{i j} k_{j} .
$$

So the total number of friends' friends is

$$
\sum_{i} k_{i}^{(2)}=\sum_{i} \sum_{j}^{a_{i}} k_{j}
$$

Principle of perversity (of sums) leads us to change the order of summation

$$
\sum_{i} \sum_{j} a_{i j} k_{j}=\sum_{j} \sum_{i} a_{i j} k_{j}=\sum_{j} k_{j} \sum_{i} a_{i j}=\sum_{j} k_{j}^{2} .
$$

Hence

$$
\sum_{i} k^{\left(k^{2}\right)}=\sum_{j} k k_{j}^{2}
$$

Section 3

Homophily and Assortativity

Homophily

Birds of a feather, flock together.

- Homophily expresses the idea that many relationships (that we might express in a graph) are more likely between similar entities.
- Many studies have confirmed it in many contexts
- characteristics: age, gender, class, geography, ...
- relationships: collaboration, friendship, ...
- In random graphs (see next week) assume the probability of a link depends on similarity of characteristics of the nodes
- we'll define in terms of $e_{i j}=$ fraction of edges that connect a vertex of type i to one of type j.

Homophily and assortativity

- Assortative mixing, or just assortativity expresses homophily between nodes based on their node degree.
- The definition is slightly circular: edges are more common between nodes with similar numbers of edges ...
- But we can work with that
- Measure using Pearson correlation coefficient of "remaining" degrees at either ends of a random edge.
- start with the idea of a correlation of nodes on a random link
- but eliminate the link in question \Rightarrow remaining
- $e_{j k}$ is the joint probability distribution of the remaining degree at either end of a randomly chosen link

Remaining degree distribution

- The degree distribution of a node reached by a random link

$$
q_{k}^{\prime}=\frac{k p_{k}}{\sum_{j} j p_{j}}, \quad k=1,2, \ldots
$$

- The remaining degree distribution, ignores the link we came in on

$$
q_{k}=q_{k+1}^{\prime}=\frac{(k+1) p_{k+1}}{\sum_{j} j p_{j}}, \quad k=0,1,2, \ldots
$$

- σ_{q}^{2} variance of of distribution q_{k}

$$
\sigma_{q}^{2}=\sum_{k} k^{2} q_{k}-\left[\sum_{k} k q_{k}\right]^{2}
$$

- q_{k} is the marginal distribution of $e_{j k}$, i.e.,

$$
q_{k}=\sum_{j} e_{j k}
$$

Metric 2: assortativity

- Assortativity

$$
r=\frac{\sum_{j, k} j k\left(e_{j k}-q_{j} q_{k}\right)}{\sigma_{q}^{2}}
$$

- r is the Pearson correlation coefficient of remaining degrees at either ends of a random edge.

$$
-1 \leq r \leq 1
$$

- cases
- r near 1 means high degree nodes often connect to high degree nodes
- r near -1 means high degree nodes often connect to low degree nodes

Evaluating assortativity

In a real network, we evaluate r by taking

$$
\hat{r}=\frac{w \sum_{e \in E} j_{e} k_{e}-\left[w \sum_{e \in E}\left(j_{e}+k_{e}\right) / 2\right]^{2}}{w \sum_{e \in E}\left(j_{e}^{2}+k_{e}^{2}\right) / 2-\left[w \sum_{e \in E}\left(j_{e}+k_{e}\right) / 2\right]^{2}},
$$

where

$$
w=|E|^{-1}
$$

$j_{e}=$ degrees of vertex at one end of the edge e
$k_{e}=$ degrees of vertex at other end of the edge e

Further reading I

Scott L. Feld, Why your friends have more friends than you do, American Journal of Sociology 96 (1991), no. 6, 1464-1477.

