Complex-Network Modelling and Inference Lecture 8: Graph features (2)

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences,
University of Adelaide
March 7, 2024

Section 1

Graph features/metrics

Graph Notation

- The network is defined by the graph,

$$
G(N, E)
$$

- We will assume (unless stated) that it is undirected.
- By default label the nodes $\{1,2, \ldots, n\}$

Graph Features/Metrics

There are two type of metrics/features

- Local (to the nodes)
- node degree
- local clustering coefficient
- centrality (various versions)
- eccentricity
- Local (to a pair of nodes)
- (shortest path) distance
- Global (for the whole network)
- average node degree and degree distribution
- radius, average distance and diameter
- global clustering coefficient
- assortativity/homophily
- graph spectrum

Section 2

Distance

Distance metrics

A distance metric $d(\cdot, \cdot)$ is function of pairs of elements x, y of a set S to the non-negative real numbers, such that

$$
d: S \times S \rightarrow[0, \infty)
$$

has the properties

$$
\begin{array}{lrl}
1 & \text { non-negativity: } & d(x, y) \geq 0 \\
2 & \text { identity: } & d(x, y)=0 \Leftrightarrow x=y \\
3 & \text { symmetry: } & d(x, y)=d(y, x) \\
4 & \text { triangle inequality: } & d(x, z) \leq d(x, y)+d(y, z)
\end{array}
$$

On a graph, we would like a distance metric on the set of nodes N, i.e., $d_{i j}$ for all $i, j \in N$.

Distances in graphs

- There are many possible distance metrics on a typical graph
- Most are linked to the idea of the "shortest" path
- provide a distance for each edge
- distance between two nodes is the sum of the distances of the edges on the shortest path
- also known as geodesic distance
- we might say the distance between unconnected nodes is ∞
- e.g.,
- "hop" distance
- physical links have a distance
- we will talk in general of "weighted" links, where the weights give distances
- can be generalised (a lot)

Erdős numbers

If you wrote a paper with Erdős, your number is 1 . If you wrote a paper with a direct co-author, your number is two, and so on. Essentially it is the graph distance you are from Erdős in a co-authorship graph.

So Erdős number is your "hop" count distance from Erdős is the co-collaborator graph.
http://en.wikipedia.org/wiki/Erdos_number
My Erdős number is 4 (through Charles Pearce, Gavin Brown, and Robert Tijdeman.)
http://www.ams.org/mathscinet/collaborationDistance.html

Metrics associated with distance: average

- Distance is a metric associated with each pair of nodes, so there are $O\left(|N|^{2}\right)$ distances. We usually want to reduce this to a smaller set of measurements
- most of these assume the graph is connected
- An obvious metric is the average distance

$$
d_{G}=\frac{\sum_{i, j \in N} d_{i j}}{n(n-1)}
$$

Metrics associated with distance: eccentricity ...

Definition

The eccentricity $\varepsilon(i)$ of a vertex i is the greatest distance between i and any other vertex.

$$
\varepsilon(i)=\max _{j} d_{i j}
$$

- the radius of a graph is the minimum eccentricity of any vertex

$$
\operatorname{radius}(G(N, E))=\min _{i \in N} \varepsilon(i)=\min _{i} \max _{j} d_{i j} .
$$

- the diameter of a graph is the maximum eccentricity of any vertex

$$
\operatorname{diameter}(G(N, E))=\max _{i \in N} \varepsilon(i)=\max _{i} \max _{j} d_{i j}
$$

which is the maximum distance between any pair of nodes.

- a peripheral vertex is one whose eccentricity achieves the diameter.
- a central vertex is one whose eccentricity achieves the radius

Issues

- Often distance is implicitly a hop count
- this isn't too interesting to me
- real networks usually have more meaningful distances
- Distance in directed graphs is not symmetric, so it isn't a formal distance metric
- quasi-metrics are like distance metrics, but give up on symmetry
- In order to calculate distances, we need to calculate shortest paths, which you might not know how to do yet (but we will learn later).

Section 3

Centrality

Centrality

- We already saw one definition of a "central" node
- based on distances
- there are actually multiple competing definitions
- Centrality is associated with importance,
- e.g., most influential person in a social network or organisation
- e.g., most important person (or thing) in a movie (the MacGuffin)
- e.g., a "central" point of failure in a computer network
- e.g., "super-spreaders" of disease
- e.g., potential bottlenecks in transport networks

Network of Thrones

Who is the most important character in Game of Thrones?

http://www.npr.org/2016/04/16/474396452/
how-math-determines-the-game-of-thrones-protagonist

Metric 4: centrality

- Different measures
- Degree centrality
\star the normalized degree of nodes
* interpretation - how likely to catch a disease
\star extension to a metric on a graph (maximized by star)
- Closeness centrality
\star reciprocal of mean geodesic distance between x and other nodes

$$
c(x)=\frac{1}{\sum_{y} d(y, x)}
$$

- Harmonic centrality
* mean of reciprocal of geodesic distance between x and other nodes

$$
c(x)=\sum_{y \neq x} \frac{1}{d(y, x)}
$$

- Betweenness centrality
\star normalized measure of how many shortest-paths a vertex appears on
- Eigenvector centrality ~ Google's PageRank
- Others: information centrality, cross-clique centrality, percolation centrality, ...

Betweenness centrality

- Quantifies the number of times the node provides "connective tissue" of the graph
- Calculation
(1) Calculate all the shortest paths in the network
(2) Calculate

$$
\begin{aligned}
\sigma_{s t} & =\text { number of shortest paths from } s \text { to } t \\
\sigma_{s t}(x) & =\text { number of shortest paths from } s \text { to } t \text { through } x
\end{aligned}
$$

(3)

$$
c_{B}(x)=\frac{1}{K} \sum_{s \neq t \neq x} \frac{\sigma_{s t}(x)}{\sigma_{s t}}
$$

where K is total number of possible pairs of vertices not involving x, e.g., in undirected graphs $K=(n-1)(n-2) / 2$.

Section 4

Clustering

Clustering

- A key idea is that in many networks we have smaller groups of "clusters"
- highly connected subnets (e.g., almost cliques)
- For instance, in social networks
- a friend's friends are more likely to also be my friends
- Clustering metrics assess to which degree a particular network has this property
- they can be local
- or global

Global clustering coefficient

- Clustering coefficient is a global measure of whether nodes tend to cluster

$$
C=3 t_{1} / t_{2}
$$

where

$$
t_{1}=\text { number of triangles }
$$

$t_{2}=$ number of connected triples or "triplets"

connected triple

triangle

- We take $3 t_{1}$ because each triangle is made up of 3 triplets
- it encodes the idea that in a clustered network it is more likely that a friends' friends are also my friends

Local clustering coefficient

- Local measure of how close a node and its neigbours are to being a clique

$$
c_{i}=\frac{\left|\left\{(j, k) \in E \mid j, k \in N_{i}\right\}\right|}{k_{i}\left(k_{i}-1\right) / 2},
$$

where N_{i} is the neigbourhood of i, and $k_{i}=\left|N_{i}\right|$.

- c_{i} counts the fraction of links in the local neighbourhood, as compared with a clique which has $k_{i}\left(k_{i}-1\right) / 2$
- We can compute a network average clustering co-efficient using

$$
\bar{C}=\frac{1}{n} \sum_{i=1}^{n} c_{i}
$$

Local clustering coefficient

Local clustering coefficient

Local clustering coefficient

Local clustering coefficient

$$
\begin{gathered}
k_{i}=\left|N_{i}\right|=4 \\
\left|\left\{(j, k) \in E \mid j, k \in N_{i}\right\}\right|=2 \\
c_{i}=\frac{1}{3}
\end{gathered}
$$

Section 5

Other metrics

Laplacian and graph spectrum

$$
L=D-A
$$

- $A=$ adjacency matrix
- $D=$ diagonal matrix of node degrees

Properties

- The eigenvalues of L are sometimes called the spectrum of a graph.
- The number of times zero appears in eigenvalues tells you the number of connected components
- resistance distance is related to Moore-Penrose inverse of Laplacian.

Example 1

Human gene regulatory network

Nodes	Genes
Edges	Interactions
$\|N\|$	21.9 K
$\|E\|$	12.3 M
\bar{k}	1.1 K
Assortativity	0.136
Clustering	0.572

http://networkrepository.com/bio-human-gene1.php

Example 2

IMDB bipartite movie/actor network

Nodes	Movies and actors
Edges	Actor worked in movie
$\|N\|$	896.3 K
$\|E\|$	3.8 M
\bar{k}	8
Assortativity	-0.053
Clustering	$8.1 \mathrm{e}-5^{1}$
http://networkrepository.com/ca-IMDB.php	

[^0]
Example 3

Amazon co-purchase network

Nodes	Product
Edges	Co-purchase
$\|N\|$	334.9 K
$\|E\|$	925.9 K
\bar{k}	5
Assortativity	-0.059
Clustering	0.205

http://networkrepository.com/com-amazon.php

Yet more metrics

- Metrics specifically for other graphs types
- reciprocity for digraphs
- Metrics with specific use
- power-law degree
- Lots of others - for some examples see http://konect.uni-koblenz.de/statistics/

Limitations of metrics

Graphs are complex.
Any small set of numbers will not capture everything important about them.

- e.g., Hamiltonian cycles

Further reading I

[^0]: ${ }^{1}$ Because it is bipartite.

