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Section 1

Random Graphs
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Why?

We often need graphs to use in simulations
I because we aren’t clever enough to do analysis of layers of network

protocols on top of a graph
I e.g., simulations of communications networks

We need statistical ensembles of graphs to test ideas
I and there is only 1 real graph
I e.g., to generate confidence intervals on results

Random graphs can let us test hypotheses
I postulate a particular type of random graph as a model

F sometimes null models or straw men

I look at its features

Often want to understand graph behaviour as it gets larger than any
examples we have

I e.g., how will my algorithm work in the future if the network gets much
bigger?
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The idea at the root

We start with the idea that there is an ensemble of graphs
I e.g., Gn = {all graphs with n nodes}
I e.g., Gn,k = {all graphs with n nodes and k edges }
I but these ensembles are usually VERY VERY big

Then we apply a probability measure to the ensemble, e.g., define

P(G ), ∀G ∈ Gn

But note that
I P(G ) might be too small to calculate
I P(G ) may be too computationally complex to calculate
I Even if P(G ) is easy, we don’t want to use it directly

F e.g., even if we knew P(G) = const, we don’t want to search through
all possible graphs to get “the one”

So we need a method for constructing graphs that match a given
probability distribution, or usually that match some observed features
of our graph(s) of interest
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Section 2

Gilbert-Erdős-Rényi random graph
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Gilbert-Erdős-Rényi random graph [Gil59, ER60]

G (n, p)

Take n = |N| nodes

connect them at random
I for each pair of nodes flip a (biased) coin
I if it is heads connect them

nodes are adjacent with probability p
I number of edges will be binomial as we have n(n − 1)/2 iid Bernoulli

trials, so

prob(|E | = k) =

(
n(n − 1)/2

k

)
pk(1− p)n(n−1)/2−k .

all graphs with n nodes, and k edges have equal probability

P(G |k edges) = 1/|Gn,k | = const
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Gilbert-Erdős-Rényi random graph features

Average number of links e = |E |

E [e] = pn(n − 1)/2 = p

(
n

2

)
.

Degree distribution is also binomial

pk =

(
n − 1

k

)
pk(1− p)n−1−k .

critical threshold np = 1
I As p or n increases, the graphs become more and more likely to be

connected
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Limits of the Binomial distribution: I

Binomial

pk =

(
n

k

)
pk(1− p)n−k .

Take limit as n→∞, the Binomial distribution approaches a “Normal”
distribution N (np, np(1− p)), i.e,

mean is µ = np

variance is σ2 = np(1− p)

distribution is Gaussian, i.e.,

p(x) ' 1√
2πσ2

e−(x−µ)
2/2σ2

.
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Limits of the Binomial distribution: I

Proof: by the Central Limit Theorem which states: take sum of n iid
random variables with finite variance

Sn =
n∑

i=1

Xn,

then in the limit as n→∞

Zn =
Sn − nµ

σ
√
n

d→ N (0, 1),

where
d→ means convergence in distribution. A Binomial distribution is the

sum of n iid Bernoulli random variates to the result is immediate.
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Limits of the Binomial distribution: II

Binomial

pk =

(
n

k

)
pk(1− p)n−k .

Take limit as n→∞, such that np = λ is kept constant. The Binomial
converges to the Poisson distribution:

pk =
λke−λ

k!
.

mean is λ = np

variance is σ2 = λ = np
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Limits of the Binomial distribution: II

Proof: np = λ, so p = λ/n→ 0

pk =
n!

k!(n − k)!
pk(1− p)n−k

=
n!

k!(n − k)!
pk(1− λ/n)−k(1− λ/n)n

' n!

k!(n − k)!
pk1 exp(−λ)

' n!

(n − k)!nk
λk

k!
exp(−λ)

' λk

k!
exp(−λ)
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Erdős-Rény random graph features

critical piece of information is np = λ and how this behaves as n increases

node degree distribution is approximately Poisson

pk =

(
n − 1

k

)
pk(1− p)n−1−k ' λk

k!
exp(−λ)

average number of links per node is (n − 1)p ' λ
I for λ < 1, average number of links per node is < 1
I for λ > 1, average number of links per node is > 1

probability degree 0 is p0 = exp(−λ)
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Connectivity

Take case that n→∞ with np = λ fixed.

Chance that two nodes are adjacent is p → 0.

What is the chance that they are connected?
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Connectivity

What is the chance two nodes are connected by a length 2 path?

prob{i , j are connected by a length 2 path}
= 1− prob{no length 2 path exists from i to j}
= 1−

∏
k 6=i ,j

prob{path i − k − j doesn’t exist}

= 1−
∏
k 6=i ,j

(1− prob{path i − k − j does exist})

= 1− (1− p2)n−2

= 1− (1− (λ/n)2)n−2

→ 0
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Connectivity

Some crude approximations

prob{i , j are connected by a length 1 path} = p

prob{i , j are connected by a length 2 path} ' (n − 2)p2

prob{i , j are connected by a length 3 path} ' (n − 2)(n − 3)p3

...

prob{i , j are connected by a length k path} ' nk−1pk = λk/n

Sum over all possible path lengths and we get

prob{a path exists} ' (λ+ λ2 + · · ·+ λn−1)/n

In the limit as n→∞ the properties of this depend on whether λ is larger
than, or smaller than 1.
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Connectivity

λ < 1

prob{a path exists} ' (λ+ λ2 + · · ·+ λn−1)/n

'
n−1∑
i=1

λi/n

'
(
λn − λ
λ− 1

)
/n

→ 0
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Connectivity

λ = 1

prob{a path exists} ' (λ+ λ2 + · · ·+ λn−1)/n

' n − 1

n
→ 1

λ > 1

prob{a path exists} ' (λ+ λ2 + · · ·+ λn−1)/n

>
λn−1

n
→ ∞

(though obviously a real probability can’t go to ∞)
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Gilbert-Erdős-Rényi random graph features

critical piece threshold for np = λ

np < 1: the size of the largest connected component grows as
O(log n)

np = 1: the size of the largest connected component grows as
O(n2/3)

np > 1: the largest connected component will have O(n) nodes, and
the next largest component will contain no more than O(log n) nodes.
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Gilbert-Erdős-Rényi random graph features

Clustering

global measure of whether nodes tend to cluster

c = 3t1/t2,

local measure of how close a node and its neigbours are to being a
clique

ci =
|{(j , k) ∈ E |j , k ∈ Ni}|

ki (ki − 1)/2
,

where Ni is the neigbourhood of i , and ki = |Ni |.
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Global clustering

c = 3t1/t2,

where

t1 = number of triangles

t2 = number of connected triples

If three nodes are connected, they form a triangle if there is a third
link.

probability of a triangle conditional on the other two links is p.

in the limit as n→∞ where np = const, the global clustering

c → 0
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Local clustering

ci =
|{(j , k) ∈ E |j , k ∈ Ni}|

ki (ki − 1)/2
,

where Ni is the neigbourhood of i , and ki = |Ni |.
Conditional on k neighbours, there are k(k − 1)/2 possible other links.

Each exists with probability p

On average p[k(k − 1)/2] of these exists

So as n→∞

E [ci ] =
pk(k − 1)/2

k(k − 1)/2
= p

→ 0
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Gilbert-Erdős-Rényi random graph features

clustering: Gilbert-Erdős-Rényi RGs don’t cluster well
I intuitively the degree of nodes remains roughly the same
I more choices for destinations of links
I so “neighbours” become less densely adjacent
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Gilbert-Erdős-Rényi Mark II

Take n = |N| nodes

connect them with m edges, randomly assigned

nodes are adjacent with probability p = m
n(n−1)/2

This is really the Erdős-Rényi graph

in limit pn2 →∞ the two types of Gilbert-Erdős-Rényi graphs have
similar properties.
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Parameter estimation

Whenever we have a model we should ask
I how can I estimate its parameters?
I what data would I need to do so?

So parameter estimation (formally part of statistics) should also be
part of any modelling toolkit
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Parameter estimation for Gilbert-Erdős-Rényi

The number of edges is a binomial

|E | ∼ Bin (|N|(|N| − 1)/2, p)

Sufficient statistics for estimating parameters are |E | and |N|
There are numerous estimators for the parameters of Binomial
distributions

I e.g., MLE (Maximum Likelihood Estimator)

p̂ =
2|E |

|N|(|N| − 1)

I Also many ways to compute confidence intervals, etc.
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Further reading I

P. Erdős and A. Rényi, On the evolution of random graphs, Publications of the
Mathematical Institute of the Hungarian Academy of Sciences 5 (1960), 17–61.

E.N. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959),
1441–1144.
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