Complex－Network Modelling and Inference

Lecture 10：Random Graphs：Erdos－Renyi random graphs

Matthew Roughan
＜matthew．roughan＠adelaide．edu．au＞
https：／／roughan．info／notes／Network＿Modelling／

School of Mathematical Sciences， University of Adelaide

March 7， 2024

Section 1

Random Graphs

Why?

- We often need graphs to use in simulations
- because we aren't clever enough to do analysis of layers of network protocols on top of a graph
- e.g., simulations of communications networks
- We need statistical ensembles of graphs to test ideas
- and there is only 1 real graph
- e.g., to generate confidence intervals on results
- Random graphs can let us test hypotheses
- postulate a particular type of random graph as a model
* sometimes null models or straw men
- look at its features
- Often want to understand graph behaviour as it gets larger than any examples we have
- e.g., how will my algorithm work in the future if the network gets much bigger?

The idea at the root

- We start with the idea that there is an ensemble of graphs
- e.g., $\mathcal{G}_{n}=\{$ all graphs with n nodes $\}$
- e.g., $\mathcal{G}_{n, k}=\{$ all graphs with n nodes and k edges $\}$
- but these ensembles are usually VERY VERY big
- Then we apply a probability measure to the ensemble, e.g., define

$$
P(G), \quad \forall G \in \mathcal{G}_{n}
$$

But note that

- $P(G)$ might be too small to calculate
- $P(G)$ may be too computationally complex to calculate
- Even if $P(G)$ is easy, we don't want to use it directly
* e.g., even if we knew $P(G)=$ const, we don't want to search through all possible graphs to get "the one"
- So we need a method for constructing graphs that match a given probability distribution, or usually that match some observed features of our graph(s) of interest

Section 2

Gilbert-Erdős-Rényi random graph

Gilbert-Erdős-Rényi random graph [Gil59, ER60]

$$
G(n, p)
$$

- Take $n=|N|$ nodes
- connect them at random
- for each pair of nodes flip a (biased) coin
- if it is heads connect them
- nodes are adjacent with probability p
- number of edges will be binomial as we have $n(n-1) / 2$ iid Bernoulli trials, so

$$
\operatorname{prob}(|E|=k)=\binom{n(n-1) / 2}{k} p^{k}(1-p)^{n(n-1) / 2-k} .
$$

- all graphs with n nodes, and k edges have equal probability

$$
P(G \mid k \text { edges })=1 /\left|\mathcal{G}_{n, k}\right|=\text { const }
$$

Gilbert-Erdős-Rényi random graph features

- Average number of links $e=|E|$

$$
E[e]=p n(n-1) / 2=p\binom{n}{2}
$$

- Degree distribution is also binomial

$$
p_{k}=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}
$$

- critical threshold $n p=1$
- As p or n increases, the graphs become more and more likely to be connected

Limits of the Binomial distribution: I

Binomial

$$
p_{k}=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Take limit as $n \rightarrow \infty$, the Binomial distribution approaches a "Normal" distribution $\mathcal{N}(n p, n p(1-p))$, i.e,

- mean is $\mu=n p$
- variance is $\sigma^{2}=n p(1-p)$
- distribution is Gaussian, i.e.,

$$
p(x) \simeq \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Limits of the Binomial distribution: I

Proof: by the Central Limit Theorem which states: take sum of n iid random variables with finite variance

$$
S_{n}=\sum_{i=1}^{n} X_{n}
$$

then in the limit as $n \rightarrow \infty$

$$
Z_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1),
$$

where \xrightarrow{d} means convergence in distribution. A Binomial distribution is the sum of n iid Bernoulli random variates to the result is immediate.

Limits of the Binomial distribution: II

Binomial

$$
p_{k}=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

Take limit as $n \rightarrow \infty$, such that $n p=\lambda$ is kept constant. The Binomial converges to the Poisson distribution:

$$
p_{k}=\frac{\lambda^{k} e^{-\lambda}}{k!} .
$$

- mean is $\lambda=n p$
- variance is $\sigma^{2}=\lambda=n p$

Limits of the Binomial distribution: II

Proof: $n p=\lambda$, so $p=\lambda / n \rightarrow 0$

$$
\begin{aligned}
p_{k} & =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\frac{n!}{k!(n-k)!} p^{k}(1-\lambda / n)^{-k}(1-\lambda / n)^{n} \\
& \simeq \frac{n!}{k!(n-k)!} p^{k} 1 \exp (-\lambda) \\
& \simeq \frac{n!}{(n-k)!n^{k}} \frac{\lambda^{k}}{k!} \exp (-\lambda) \\
& \simeq \frac{\lambda^{k}}{k!} \exp (-\lambda)
\end{aligned}
$$

Erdős-Rény random graph features

critical piece of information is $n p=\lambda$ and how this behaves as n increases

- node degree distribution is approximately Poisson

$$
p_{k}=\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \simeq \frac{\lambda^{k}}{k!} \exp (-\lambda)
$$

- average number of links per node is $(n-1) p \simeq \lambda$
- for $\lambda<1$, average number of links per node is <1
- for $\lambda>1$, average number of links per node is >1
- probability degree 0 is $p_{0}=\exp (-\lambda)$

Connectivity

- Take case that $n \rightarrow \infty$ with $n p=\lambda$ fixed.
- Chance that two nodes are adjacent is $p \rightarrow 0$.
- What is the chance that they are connected?

Connectivity

What is the chance two nodes are connected by a length 2 path?

$$
\begin{aligned}
& \operatorname{prob}\{i, j \text { are connected by a length } 2 \text { path }\} \\
& =1-\operatorname{prob}\{\text { no length } 2 \text { path exists from } i \text { to } j\} \\
& \left.=1-\prod_{k \neq i, j} \text { prob\{path } i-k-j \text { doesn't exist }\right\} \\
& =1-\prod_{k \neq i, j}(1-\operatorname{prob}\{\text { path } i-k-j \text { does exist }\}) \\
& =1-\left(1-p^{2}\right)^{n-2} \\
& =1-\left(1-(\lambda / n)^{2}\right)^{n-2} \\
& \rightarrow 0
\end{aligned}
$$

Connectivity

Some crude approximations
$\operatorname{prob}\{i, j$ are connected by a length 1 path $\}=p$
$\operatorname{prob}\{i, j$ are connected by a length 2 path $\} \simeq(n-2) p^{2}$ $\operatorname{prob}\{i, j$ are connected by a length 3 path $\} \simeq(n-2)(n-3) p^{3}$
$\operatorname{prob}\{i, j$ are connected by a length k path $\} \simeq n^{k-1} p^{k}=\lambda^{k} / n$
Sum over all possible path lengths and we get

$$
\operatorname{prob}\{\text { a path exists }\} \simeq\left(\lambda+\lambda^{2}+\cdots+\lambda^{n-1}\right) / n
$$

In the limit as $n \rightarrow \infty$ the properties of this depend on whether λ is larger than, or smaller than 1 .

Connectivity

$\lambda<1$

$$
\begin{aligned}
\operatorname{prob}\{\text { a path exists }\} & \simeq\left(\lambda+\lambda^{2}+\cdots+\lambda^{n-1}\right) / n \\
& \simeq \sum_{i=1}^{n-1} \lambda^{i} / n \\
& \simeq\left(\frac{\lambda^{n}-\lambda}{\lambda-1}\right) / n \\
& \rightarrow 0
\end{aligned}
$$

Connectivity

$\lambda=1$

$$
\begin{aligned}
\operatorname{prob}\{\text { a path exists }\} & \simeq\left(\lambda+\lambda^{2}+\cdots+\lambda^{n-1}\right) / n \\
& \simeq \frac{n-1}{n} \\
& \rightarrow 1
\end{aligned}
$$

$\lambda>1$

$$
\begin{aligned}
\operatorname{prob}\{\text { a path exists }\} & \simeq\left(\lambda+\lambda^{2}+\cdots+\lambda^{n-1}\right) / n \\
& >\frac{\lambda^{n-1}}{n} \\
& \rightarrow \infty^{n}
\end{aligned}
$$

(though obviously a real probability can't go to ∞)

Gilbert-Erdős-Rényi random graph features

critical piece threshold for $n p=\lambda$

- $n p<1$: the size of the largest connected component grows as $O(\log n)$
- $n p=1$: the size of the largest connected component grows as $O\left(n^{2 / 3}\right)$
- $n p>1$: the largest connected component will have $O(n)$ nodes, and the next largest component will contain no more than $O(\log n)$ nodes.

Gilbert-Erdős-Rényi random graph features

Clustering

- global measure of whether nodes tend to cluster

$$
c=3 t_{1} / t_{2}
$$

- local measure of how close a node and its neigbours are to being a clique

$$
c_{i}=\frac{\left|\left\{(j, k) \in E \mid j, k \in N_{i}\right\}\right|}{k_{i}\left(k_{i}-1\right) / 2},
$$

where N_{i} is the neigbourhood of i, and $k_{i}=\left|N_{i}\right|$.

Global clustering

$$
c=3 t_{1} / t_{2}
$$

where
$t_{1}=$ number of triangles
$t_{2}=$ number of connected triples

- If three nodes are connected, they form a triangle if there is a third link.
- probability of a triangle conditional on the other two links is p.
- in the limit as $n \rightarrow \infty$ where $n p=$ const, the global clustering

$$
c \rightarrow 0
$$

Local clustering

$$
c_{i}=\frac{\left|\left\{(j, k) \in E \mid j, k \in N_{i}\right\}\right|}{k_{i}\left(k_{i}-1\right) / 2},
$$

where N_{i} is the neigbourhood of i, and $k_{i}=\left|N_{i}\right|$.

- Conditional on k neighbours, there are $k(k-1) / 2$ possible other links.
- Each exists with probability p
- On average $p[k(k-1) / 2]$ of these exists
- So as $n \rightarrow \infty$

$$
\begin{aligned}
E\left[c_{i}\right] & =\frac{p k(k-1) / 2}{k(k-1) / 2} \\
& =p \\
& \rightarrow 0
\end{aligned}
$$

Gilbert-Erdős-Rényi random graph features

- clustering: Gilbert-Erdős-Rényi RGs don't cluster well
- intuitively the degree of nodes remains roughly the same
- more choices for destinations of links
- so "neighbours" become less densely adjacent

Gilbert-Erdős-Rényi Mark II

- Take $n=|N|$ nodes
- connect them with m edges, randomly assigned
- nodes are adjacent with probability $p=\frac{m}{n(n-1) / 2}$
- This is really the Erdős-Rényi graph
- in limit $p n^{2} \rightarrow \infty$ the two types of Gilbert-Erdős-Rényi graphs have similar properties.

Parameter estimation

- Whenever we have a model we should ask
- how can I estimate its parameters?
- what data would I need to do so?
- So parameter estimation (formally part of statistics) should also be part of any modelling toolkit

Parameter estimation for Gilbert-Erdős-Rényi

- The number of edges is a binomial

$$
|E| \sim \operatorname{Bin}(|N|(|N|-1) / 2, p)
$$

- Sufficient statistics for estimating parameters are $|E|$ and $|N|$
- There are numerous estimators for the parameters of Binomial distributions
- e.g., MLE (Maximum Likelihood Estimator)

$$
\hat{p}=\frac{2|E|}{|N|(|N|-1)}
$$

- Also many ways to compute confidence intervals, etc.

Further reading I

R
P. Erdős and A. Rényi, On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5 (1960), 17-61.

嘈
E.N. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959), 1441-1144.

