Complex-Network Modelling and Inference

Lecture 13: Random Graphs: preferential-attachment models

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences, University of Adelaide

March 7, 2024

Section 1

Preferential attachment graphs

Problem with "small-world" graph

- Small-world graph replicates desired
- short path length
- high clustering
- Node degree is (almost) always k
- but observed node-degree distributions are more variable

'Scale-free' Networks

- Barabási and Albert [BA99]
- Draw on idea that the "rich get richer"
- Preferential attachment model

1 start with $N=\{1,2\}$, and $E=\{(1,2)\}$.
2 for i=3:n
a add vertex i to N
b add $\operatorname{link}(i, j)$ to E, where $j \in\{1,2, \ldots, i-1\}$ is chosen with probability

$$
p_{j}=\frac{k_{j}}{\sum_{k=1}^{i-1} k_{k}},
$$

where k_{j} is the degree of node j.

'Scale-free' Networks, mark II

- Barabási and Albert [BA99]
- Draw on idea that the "rich get richer"
- Preferential attachment model

1 start with $N=\{1,2, \ldots, m\}$, and

$$
\begin{aligned}
& E=\{(i, j) \mid \forall i=1,2, \ldots, m, j=i+1, \ldots, m\} \\
& 2 \text { for } \begin{array}{l}
E=3: \mathrm{n}
\end{array} \\
& \quad \text { a add vertex } i \text { to } N \\
& \text { b add } m \text { links }(i, j) \text { to } E \text {, where } j \in\{1,2, \ldots, i-1\} \text { is chosen with } \\
& \quad \text { probability } \\
& \qquad p_{j}=\frac{k_{j}}{\sum_{k=1}^{i-1} k_{k}}, \\
& \\
& \text { where } k_{j} \text { is the degree of node } j .
\end{aligned}
$$

- Note that the result will be a multi-graph unless care is take to sample from the above distribution without replacement.

Properties of preferential attachment

- connected (by construction)
- degree distribution takes power-law form

$$
p_{k} \simeq k^{-\alpha} .
$$

Degree distribution approximation

- Take degree k_{i} of i th node to be a continuous variable
- Take time (number of nodes added) to be continuous
- Rate of increase of degree is proportional to degree

$$
\frac{d k_{i}}{d t}=m \frac{k_{i}}{\sum_{j=1}^{n} k_{j}}
$$

- note that the total number of links in the network is

$$
|E|=m t=\sum_{j=1}^{n} k_{j} / 2
$$

Degree distribution approximation

- Substitute $2 m t$ in first equations

$$
\frac{d k_{i}}{d t}=\frac{k_{i}}{2 t} .
$$

- Solve the DE, and we get

$$
k_{i}(t)=c t^{1 / 2}
$$

- Use initial condition $k_{i}\left(t_{i}\right)=m$

$$
k_{i}(t)=m\left(t / t_{i}\right)^{1 / 2}
$$

Degree distribution approximation

- So

$$
k_{i}(t)=m\left(t / t_{i}\right)^{1 / 2}
$$

- Calculating the CDF we get

$$
\begin{aligned}
\operatorname{Prob}\left\{k_{i}(t)<k\right\} & =\operatorname{Prob}\left\{m\left(t / t_{i}\right)^{1 / 2}<k\right\} \\
& =\operatorname{Prob}\left\{\left(t / t_{i}\right)<(k / m)^{2}\right\} \\
& =\operatorname{Prob}\left\{\left(t_{i} / t\right)>(m / k)^{2}\right\} \\
& =1-\operatorname{Prob}\left\{\left(t_{i} / t\right) \leq(m / k)^{2}\right\}
\end{aligned}
$$

- Adding nodes at uniform time intervals means $t_{i}=i$, so in the limit as $t \rightarrow \infty$, the t_{i} / t are uniformly distributed on $[0,1]$, and we get the form

$$
\operatorname{Prob}\left\{k_{i}(t)<k\right\} \simeq 1-(m / k)^{2}
$$

for $(m / k)^{2} \leq 1$

Degree distribution approximation

- For large $k,(m / k)^{2} \leq 1$, and the density function p_{k} can be approximated by the derivative

$$
\begin{aligned}
p_{k} & \simeq \frac{d}{d k} \operatorname{Prob}\left\{k_{i}(t)<k\right\} \\
& \simeq-\frac{d}{d k}(m / k)^{2} \\
& \simeq 2 m^{2} k^{-3}
\end{aligned}
$$

- we usually care about the limit (for this type of distribution) so we write

$$
p_{k} \sim k^{-3}
$$

- This is a power law with exponent 3

Generalisation

Evolve the network over time

- add m edges with probability p
- one end uniformly chosen over all nodes
- other end chosen proportional to degree
- rewire m edges with probability q
- choose node i at random
- rewire one of its edges using proportional attachment
- with probability $1-p-q$ a new node is added
- m new edges with proportional attachment

Can generate degree distribution with power-law between 2 and ∞.

Why are they called "Scale Free"?

- degree distribution doesn't depend on the size of the network (as long as it's a limit)
- form of degree distribution doesn't depend on number of links (per node)
- power-laws exhibit a type of scale invariance

$$
\begin{aligned}
p(x) & =a x^{-\alpha} \\
p(b x) & =a(b x)^{-\alpha} \\
& =A x^{-\alpha} \propto p(x)
\end{aligned}
$$

- another form of scale invariance

$$
p(2 x)=2^{\alpha} p(x)
$$

regardless of x

Power-laws

Power-laws look like straight lines on a log-log graph

Do they match real data?

Actor collaboration graph appears to have power-law [BA99]

Do they match real data?

Care must be taken though

Do they match real data?

AS-graph appears to have power-law [FFF99]

Do they match real data?

Care must be taken though

PDF vs CCDF

- for continuous distributions
- PDF $=$ derivative of CDF $=$ - derivative of CCDF
- if one has a power-law, both should
- PDF: $\operatorname{Prob}\left\{k_{i}==k\right\}$
- hard to accurately estimate
- require arbitrary choice of "binning"
- lots of "zeros" in the tail
- zeros don't show up on log-log graph
- CCDF: $\operatorname{Prob}\left\{k_{i}>k\right\}$
- easy to estimate/plot
$\log \log ($ sort $($ degree $), 1-(0: n-1) / n)$
- much more robust in the tail

Do they match real data?

WWW page graph really appears to have power-law [AJB99]

http://www.nd.edu/~networks/resources.htm

Do they match real data?

WWW page graph really appears to have power-law [AJB99]

http://www.nd.edu/~networks/resources.htm

Power-law degree

- Appeal of the model
- simple/parsimonious
- real networks sometimes have power-law degree
* makes more sense for virtual networks
- power-law is an emergent phenomena
- seems logical, but wait
- Even if they match data, does the model explain the "real" process behind network construction
- is this the only way to generate power-laws?
- if not, does the model tell us anything?
- do other features match real networks?
- And they don't match as many data sets as the hype: "Scale-free networks are rare", Broido and Clauset, Nature Communications 2019.
- We'll come back to these topics after we consider measurements in more detail.

Preferential attachment generalisations

- Price's model: We can make the number of edges brought by a new node random
- We can allow some re-wiring
- allows varying power-law exponent
- Can allow node birth and death of nodes

Estimation

- In BA model, it comes down to estimating average degree
- In general, need to estimate exponent of a power-law
- more on this later

Further reading I

R'eka Albert, Hawoong Jeong, and Albert-László Barabási, Diameter of the world wide web, Nature 401 (1999), no. 130, 130-131.
A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999), 509-512.

Richalis Faloutsos, Petros Faloutsos, and Christos Faloutsos, On power-law relationships of the Internet topology, ACM SIGCOMM'99, 1999.

