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Section 1

Preferential attachment graphs
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Problem with “small-world” graph

Small-world graph replicates desired
I short path length
I high clustering

Node degree is (almost) always k
I but observed node-degree distributions are more variable
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’Scale-free’ Networks

Barabási and Albert [BA99]

Draw on idea that the “rich get richer”

Preferential attachment model

1 start with N = {1, 2}, and E = {(1, 2)}.
2 for i=3:n

a add vertex i to N
b add link (i , j) to E , where j ∈ {1, 2, . . . , i − 1} is chosen with

probability

pj =
kj∑i−1
k=1 kk

,

where kj is the degree of node j .
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’Scale-free’ Networks, mark II

Barabási and Albert [BA99]

Draw on idea that the “rich get richer”

Preferential attachment model

1 start with N = {1, 2, . . . ,m}, and
E = {(i , j) | ∀i = 1, 2, . . . ,m, j = i + 1, . . . ,m}.

2 for i=3:n

a add vertex i to N
b add m links (i , j) to E , where j ∈ {1, 2, . . . , i − 1} is chosen with

probability

pj =
kj∑i−1
k=1 kk

,

where kj is the degree of node j .

Note that the result will be a multi-graph unless care is take to
sample from the above distribution without replacement.
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Properties of preferential attachment

connected (by construction)

degree distribution takes power-law form

pk ' k−α.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI March 7, 2024 6 / 24



Degree distribution approximation

Take degree ki of ith node to be a continuous variable

Take time (number of nodes added) to be continuous

Rate of increase of degree is proportional to degree

dki
dt

= m
ki∑n
j=1 kj

note that the total number of links in the network is

|E | = mt =
n∑

j=1

kj/2
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Degree distribution approximation

Substitute 2mt in first equations

dki
dt

=
ki
2t

.

Solve the DE, and we get

ki (t) = ct1/2

Use initial condition ki (ti ) = m

ki (t) = m(t/ti )
1/2
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Degree distribution approximation

So
ki (t) = m(t/ti )

1/2

Calculating the CDF we get

Prob{ki (t) < k} = Prob{m(t/ti )
1/2 < k}

= Prob{(t/ti ) < (k/m)2}
= Prob{(ti/t) > (m/k)2}
= 1− Prob{(ti/t) ≤ (m/k)2}

Adding nodes at uniform time intervals means ti = i , so in the limit
as t →∞, the ti/t are uniformly distributed on [0, 1], and we get the
form

Prob{ki (t) < k} ' 1− (m/k)2

for (m/k)2 ≤ 1
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Degree distribution approximation

For large k, (m/k)2 ≤ 1, and the density function pk can be
approximated by the derivative

pk ' d

dk
Prob{ki (t) < k}

' − d

dk
(m/k)2

' 2m2k−3

we usually care about the limit (for this type of distribution) so we
write

pk ∼ k−3

This is a power law with exponent 3
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Generalisation

Evolve the network over time

add m edges with probability p
I one end uniformly chosen over all nodes
I other end chosen proportional to degree

rewire m edges with probability q
I choose node i at random
I rewire one of its edges using proportional attachment

with probability 1− p − q a new node is added
I m new edges with proportional attachment

Can generate degree distribution with power-law between 2 and ∞.
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Why are they called “Scale Free”?

degree distribution doesn’t depend on the size of the network (as long
as it’s a limit)

form of degree distribution doesn’t depend on number of links (per
node)

power-laws exhibit a type of scale invariance

p(x) = ax−α

p(bx) = a(bx)−α

= Ax−α ∝ p(x)

another form of scale invariance

p(2x) = 2αp(x)

regardless of x
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Power-laws

Power-laws look like straight lines on a log-log graph
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Do they match real data?

Actor collaboration graph appears to have power-law [BA99]
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Do they match real data?

Care must be taken though

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−4

10
−2

10
0

actor degree

C
C

D
F

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI March 7, 2024 15 / 24



Do they match real data?

AS-graph appears to have power-law [FFF99]
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Do they match real data?

Care must be taken though
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PDF vs CCDF

for continuous distributions
I PDF = derivative of CDF = - derivative of CCDF
I if one has a power-law, both should

PDF: Prob{ki == k}
I hard to accurately estimate
I require arbitrary choice of “binning”
I lots of “zeros” in the tail
I zeros don’t show up on log-log graph

CCDF: Prob{ki > k}
I easy to estimate/plot

loglog(sort(degree), 1 - (0:n-1)/n)
I much more robust in the tail
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Do they match real data?

WWW page graph really appears to have power-law [AJB99]
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Do they match real data?

WWW page graph really appears to have power-law [AJB99]
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Power-law degree

Appeal of the model
I simple/parsimonious
I real networks sometimes have power-law degree

F makes more sense for virtual networks

I power-law is an emergent phenomena
I seems logical, but wait

Even if they match data, does the model explain the “real” process
behind network construction

I is this the only way to generate power-laws?
I if not, does the model tell us anything?
I do other features match real networks?

And they don’t match as many data sets as the hype:
“Scale-free networks are rare”, Broido and Clauset, Nature
Communications 2019.

We’ll come back to these topics after we consider measurements in
more detail.
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Preferential attachment generalisations

Price’s model: We can make the number of edges brought by a new
node random

We can allow some re-wiring
I allows varying power-law exponent

Can allow node birth and death of nodes
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Estimation

In BA model, it comes down to estimating average degree

In general, need to estimate exponent of a power-law
I more on this later
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Further reading I

R’eka Albert, Hawoong Jeong, and Albert-László Barabási, Diameter of the world
wide web, Nature 401 (1999), no. 130, 130–131.

A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science
286 (1999), 509–512.
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