Complex-Network Modelling and Inference
 Lecture 17: Operations on graphs (binary operators)

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences,
University of Adelaide
March 7, 2024

Section 1

Binary operators

Binary Operators

- Disjoint union $G \cup H$
- Graph products based on the Cartesian product of the vertex sets:
- Cartesian product $G \square H$
- Tensor product $G \times H$
- Strong product $G * H$
- Lexicographic product $G \bullet H$
- Rooted product $G \circ H$
- Others (not discussed here)
- Clique sum
- Corona and Zig-zag products
- Series and Parallel compositions

Disjoint union $G \cup H$

- For two graphs G and H with disjoint node sets, i.e.,

$$
N(G) \cap N(H)=\phi
$$

the disjoint union $G \cup H$ is the graph formed by taking the union of the nodes and edges, i.e.,

$$
\begin{aligned}
N(G \cup H) & =N(G) \cup N(H) \\
E(G \cup H) & =E(G) \cup E(H)
\end{aligned}
$$

- Properties
- Commutative (for unlabelled graphs)
- Associative (for unlabelled graphs)
- Graph join: disjoint union with all edges that join nodes from G to H

Cartesian product of vertices/nodes

- Cartesian (or direct) product defined on two sets X and Y
- Cartesian product of two sets of nodes results in all pairs of nodes with one from each set

$$
X \times Y=\{(x, y) \mid x \in X \text { and } y \in Y\}
$$

- its just a generalised vector
- Number of members of product

$$
|X \times Y|=|X| \times|Y|
$$

- Generalizes to n-ary products

Properties of Cartesian Products

- Associative (effectively)

$$
X \times(Y \times Z)=(X \times Y) \times Z
$$

- Doesn't commute $X \times Y \neq Y \times X$
- order is important
- in some of what follows we can ignore order because unlabelled graphs are isomorphic
- Distributive over intersections

$$
A \times(B \cap C)=(A \times B) \cap(A \times C)
$$

and unions

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

Cartesian product of graphs

- $N(G \square H)=N(G) \times N(H)$
- any two vertices $\left(u, u^{\prime}\right) \in G \square H$ and $\left(v, v^{\prime}\right) \in G \square H$ are adjacent iff one of the following is true
- $u=v$ and $\left(u^{\prime}, v^{\prime}\right) \in E(H)$; or
- $u^{\prime}=v^{\prime}$ and $(u, v) \in E(G)$

Example Cartesian Product 1

The Cartesian product of two (single) edges is a cycle with four vertices

Example Cartesian Product 2

The Cartesian product of an single edge and a path graph is a ladder graph

\square

H

Example Cartesian Product 3

The Cartesian product of two path graphs is a grid graph.

Example Cartesian Product 4

More complicated example

Properties Cartesian product of graphs

- Commutes in the sense that $G \square H \simeq H \square G$
- Associative in the sense that $F \square(G \square H) \simeq(F \square G) \square H$
- Square symbol \square used because Cartesian product of two edges is a "box" (a cycle with four edges).
- A Cartesian product is bipartite if and only if each of its factors is.

Cartesian product: Why?

- Ladder graphs approximate connectivity in some networks

- bi-connectivity is easy to achieve in a simple "cookie cutter" manner

Kronecker or Tensor product $A \otimes B$

Kronecker product of matrices A and B

$$
A \otimes B=\left[\begin{array}{lll}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

- bi-linear and associative
- non-commutative

$$
A \otimes B \neq B \otimes A \text { (in general) }
$$

- transposition is distributive over Kronecker product

$$
(A \otimes B)^{T}=A^{T} \otimes B^{T}
$$

- lots of other well-known properties

See http://en.wikipedia.org/wiki/Kronecker_product

Tensor product of graphs $G \times H$

- Tensor product (direct product, categorical product, cardinal product, or Kronecker product) $G \times H$
- Defined by
- $N(G \times H)=N(G) \times N(H)$
- any two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent iff $\left(u^{\prime}, v^{\prime}\right) \in E(H)$ and $(u, v) \in E(G)$
- That is u^{\prime} is adjacent to u in G and v^{\prime} is adjacent to v in H.
- Equivalent to taking the Kronecker (or tensor) product of the adjacency matrices of G and H.

$$
A_{G \times H}=A_{H} \otimes A_{G}
$$

Example Tensor product

Tensor product by adjacency matrices

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Tensor product properties

- There can be multiple (or no) factorizations of a graph into different tensor products.
- If either G or H is bipartite then their tensor product is also.
- The tensor product is connected iff both G and H are connected, and at least one factor is non-bipartite.
- Properties derived from those of Kronecker products
- bilinear
- associative

Strong product $G * H$

- Defined by
- $N(G * H)=N(G) \times N(H)$
- any two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent iff

$$
\begin{aligned}
& \star\left(u^{\prime}, v^{\prime}\right) \in E(H) \text { and }(u, v) \in E(G) \text {; or } \\
& \star u=v \text { and }\left(u^{\prime}, v^{\prime}\right) \in E(H) \text {; or } \\
& \star u^{\prime}=v^{\prime} \text { and }(u, v) \in E(G)
\end{aligned}
$$

- Its like the union of the Cartesian and Tensor products.

Strong product $G * H$

Example network design pattern (within a PoP)

Lexicographic product $G \bullet H$

- Lexicographic product (graph composition) G•H
- Defined by
- $N(G \bullet H)=N(G) \times N(H)$
- Any two vertices $\left(u, u^{\prime}\right)$ and ($\left.v, v^{\prime}\right)$ are adjacent iff
* $(u, v) \in E(G)$; or
$\star u=v$ and $\left(u^{\prime}, v^{\prime}\right) \in E(H)$
- This is the first one in which order is really important
\star non-commutative
* Lexicographic order $=$ dictionary order

Example Lexicographic product

Example Lexicographic product

Rooted product $G \circ H$

- Product of G with rooted graph H
- Defined by
- $N(G \circ H)=N(G) \times N(H)$
- Take the root of H to be $h \in N(H)$
- Any two vertices $\left(u, u^{\prime}\right)$ and ($\left.v, v^{\prime}\right)$ are adjacent iff
$\star u^{\prime}=h$ and $v^{\prime}=h$ and $(u, v) \in E(G)$; or
$\star u=v$ and $\left(u^{\prime}, v^{\prime}\right) \in E(H)$
- Imagine taking $|N(G)|$ copies of H, and associating the root of H with each node of G.

Example Rooted Product

Example Rooted Product

Rooted Product Properties

- Non-commutative
- If G is also rooted then $G \circ H$ is rooted.
- The rooted product of two trees is a tree.

COLD part II

- COLD generated PoP-level map
- Use graph products to construct the layer below
- multiple-routers as part of PoP
- multiple links between PoPs (for redundancy)
- structure inside the PoP

Section 2

Operators on a graph and an edge

Binary Operators on a graph and an edge

- Deletion $(E \leftarrow E \backslash e)$
- Insertion $(E \leftarrow E \cup e)$
- Edge contraction

Edge Contraction

- Merge two adjacent nodes along an edge $e=(u, v), u, v \in N, u \neq v$.
- New graphs G^{\prime}, which has
- nodes $N^{\prime}=(N \backslash\{u, v\}) \cup\{w\}$
- edges $E^{\prime}=E \backslash\{e\}$
- every edge $(u, i) \in E$ is replaced by $(w, i) \in E^{\prime}$ (and the same for links $(v, i) \in E$)

Section 3

Operators on a graph and a node

Binary Operators on a graph and a node

- Deletion
- remove node n from the graph
- also delete all edges $(n, i) \in E$ from the graph
- Insertion

Further reading I

