Complex-Network Modelling and Inference Lecture 17: Operations on graphs (binary operators)

Matthew Roughan <matthew.roughan@adelaide.edu.au> https://roughan.info/notes/Network_Modelling/

> School of Mathematical Sciences, University of Adelaide

> > March 7, 2024

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Section 1

Binary operators

< □ > < □ > < □ > < □ > < □ >

Binary Operators

• Disjoint union $G \cup H$

• Graph *products* based on the Cartesian product of the vertex sets:

- ► Cartesian product *G*□*H*
- Tensor product $G \times H$
- Strong product G * H
- Lexicographic product G H
- Rooted product $G \circ H$
- Others (not discussed here)
 - Clique sum
 - Corona and Zig-zag products
 - Series and Parallel compositions

Disjoint union $G \cup H$

• For two graphs G and H with disjoint node sets, *i.e.*,

 $N(G) \cap N(H) = \phi$

the **disjoint union** $G \cup H$ is the graph formed by taking the union of the nodes and edges, *i.e.*,

$$N(G \cup H) = N(G) \cup N(H)$$

$$E(G \cup H) = E(G) \cup E(H)$$

Properties

- Commutative (for unlabelled graphs)
- Associative (for unlabelled graphs)

• Graph join: disjoint union with all edges that join nodes from G to H

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cartesian product of vertices/nodes

- Cartesian (or direct) product defined on two sets X and Y
- Cartesian product of two sets of nodes results in all pairs of nodes with one from each set

$$X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y\}$$

- its just a generalised vector
- Number of members of product

$$|X \times Y| = |X| \times |Y|$$

• Generalizes to *n*-ary products

Properties of Cartesian Products

Associative (effectively)

$$X \times (Y \times Z) = (X \times Y) \times Z$$

- Doesn't commute $X \times Y \neq Y \times X$
 - order is important
 - in some of what follows we can ignore order because unlabelled graphs are isomorphic
- Distributive over intersections

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

and unions

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Cartesian product of graphs

- $N(G \Box H) = N(G) \times N(H)$
- any two vertices (u, u') ∈ G□H and (v, v') ∈ G□H are adjacent iff one of the following is true

•
$$u = v$$
 and $(u', v') \in E(H)$; or

•
$$u' = v'$$
 and $(u, v) \in E(G)$

• • = • •

The Cartesian product of two (single) edges is a cycle with four vertices

The Cartesian product of an single edge and a path graph is a ladder graph

The Cartesian product of two path graphs is a grid graph.

More complicated example

Properties Cartesian product of graphs

- Commutes in the sense that $G \Box H \simeq H \Box G$
- Associative in the sense that $F \square (G \square H) \simeq (F \square G) \square H$
- Square symbol □ used because Cartesian product of two edges is a "box" (a cycle with four edges).
- A Cartesian product is bipartite if and only if each of its factors is.

Cartesian product: Why?

• Ladder graphs approximate connectivity in some networks

• bi-connectivity is easy to achieve in a simple "cookie cutter" manner

▲ □ ▶ ▲ □ ▶ ▲ □

Kronecker or Tensor product $A \otimes B$

Kronecker product of matrices A and B

$$A \otimes B = \left[\begin{array}{ccc} a_{11}B & \cdots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{array}\right]$$

- bi-linear and associative
- on-commutative

$$A \otimes B \neq B \otimes A$$
 (in general)

transposition is distributive over Kronecker product

$$(A\otimes B)^T = A^T \otimes B^T$$

lots of other well-known properties
See http://en.wikipedia.org/wiki/Kronecker_product

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Tensor product of graphs $G \times H$

- Tensor product (direct product, categorical product, cardinal product, or Kronecker product) $G \times H$
- Defined by
 - $N(G \times H) = N(G) \times N(H)$
 - ▶ any two vertices (u, u') and (v, v') are adjacent iff $(u', v') \in E(H)$ and $(u, v) \in E(G)$
 - That is u' is adjacent to u in G and v' is adjacent to v in H.
- Equivalent to taking the Kronecker (or tensor) product of the adjacency matrices of G and H.

$$A_{G\times H}=A_H\otimes A_G$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Example Tensor product

э

Tensor product by adjacency matrices

Tensor product properties

- There can be multiple (or no) factorizations of a graph into different tensor products.
- If either G or H is bipartite then their tensor product is also.
- The tensor product is connected iff both G and H are connected, and at least one factor is non-bipartite.
- Properties derived from those of Kronecker products
 - bilinear
 - associative

Strong product G * H

• Defined by

$$\mathsf{N}(G * H) = \mathsf{N}(G) \times \mathsf{N}(H)$$

• any two vertices (u, u') and (v, v') are adjacent iff

★
$$(u', v') \in E(H)$$
 and $(u, v) \in E(G)$; or

★
$$u = v$$
 and $(u', v') \in E(H)$; or

★
$$u' = v'$$
 and $(u, v) \in E(G)$

Its like the union of the Cartesian and Tensor products.

< (17) > < (27 >)

Strong product G * H

Example network design pattern (within a PoP)

Lexicographic product $G \bullet H$

- Lexicographic product (graph composition) $G \bullet H$
- Defined by
 - $\mathsf{N}(G \bullet H) = \mathsf{N}(G) \times \mathsf{N}(H)$
 - Any two vertices (u, u') and (v, v') are adjacent iff

(
$$u, v$$
) $\in E(G)$; or

•
$$u = v$$
 and $(u', v') \in E(H)$

- This is the first one in which order is really important
 - ★ non-commutative
 - Lexicographic order = dictionary order

Example Lexicographic product

э

Example Lexicographic product

э

Rooted product $G \circ H$

- Product of G with rooted graph H
- Defined by
 - $N(G \circ H) = N(G) \times N(H)$
 - Take the root of H to be $h \in N(H)$
 - Any two vertices (u, u') and (v, v') are adjacent iff

★
$$u' = h$$
 and $v' = h$ and $(u, v) \in E(G)$; or

★
$$u = v$$
 and $(u', v') \in E(H)$

▶ Imagine taking |N(G)| copies of H, and associating the root of H with each node of G.

Example Rooted Product

< 行

э

Example Rooted Product

(日)

э

Rooted Product Properties

- Non-commutative
- If G is also rooted then $G \circ H$ is rooted.
- The rooted product of two trees is a tree.

COLD part II

- COLD generated PoP-level map
- Use graph products to construct the layer below
 - multiple-routers as part of PoP
 - multiple links between PoPs (for redundancy)
 - structure inside the PoP

► < ∃ ►</p>

Section 2

Operators on a graph and an edge

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Binary Operators on a graph and an edge

- Deletion $(E \leftarrow E \setminus e)$
- Insertion $(E \leftarrow E \cup e)$
- Edge contraction

3

A (10) N (10) N (10)

Edge Contraction

- Merge two adjacent nodes along an edge e = (u, v), $u, v \in N$, $u \neq v$.
- New graphs G', which has
 - nodes $N' = (N \setminus \{u, v\}) \cup \{w\}$
 - edges $E' = E \setminus \{e\}$
 - ► every edge (u, i) ∈ E is replaced by (w, i) ∈ E' (and the same for links (v, i) ∈ E)

A (10) < A (10) < A (10) </p>

Section 3

Operators on a graph and a node

< □ > < 同 > < 回 > < 回 > < 回 >

æ

Binary Operators on a graph and a node

- Deletion
 - remove node n from the graph
 - ▶ also delete all edges $(n, i) \in E$ from the graph
- Insertion

< (17) > < (17) > <

Further reading I

2

メロト メポト メヨト メヨト