Complex-Network Modelling and Inference
 Lecture 19: Shortest paths (Floyd-Warshall algorithm)

Matthew Roughan
matthew.roughan@adelaide.edu.au
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences,
University of Adelaide
March 7, 2024

Shortest-path problems

The shortest-path problem is a VERY common problem when we work with graphs and networks (and other problems too!)

- Used in metrics: e.g.,
- distance
- betweenness
- Its important in network routing
- how do your packets find the best way to their destination in the Internet?
- how does Google maps work out your best route?
- how do illegal wildlife traffickers work out which way to ship their goods?
- Many other practical uses
- image segmentation
- AI
- solving the Rubik's Cube
- integrated circuit layout
- Shortest paths can also be part of another algorithm

Variants

- single-source shortest path problem
- implicit that we find path to all destinations
- no point solving in single source, single destination problem
- all-pairs shortest path problem

And there are other generalisations that we will talk about later.

Challenge

- Exponentially many possible paths
- we can't even hope to list them all, let alone search through all of them
- Its an Integer Linear Program
- but we can't write down all constraints for a large problem
- We could solve by taking matrix powers, but might need to compute A^{n}, which is a lot of computation
But it is NOT NP-hard

Algorithms

There are quite a few algorithms

- Dijkstra
- Bellman-Ford (dynamic programming)
- Floyd-Warshall

All use the idea that a shortest path is built of of shortest path (segments), but they use this idea in different ways.

Floyd-Warshall

Solves the all-pairs shortest path problem

- Can cope with negative weights, but assumes no negative cycles
- The approach is to add nodes in one by one, and re-compute shortest paths at each step
- shortest path is either the same
- or changes to include the new node

Input

- An undirected or directed graph (N, E)
- WLOG label the nodes $\{1,2, \ldots, n\}$
- Link weights α_{e}, define link distances

$$
d_{i j}= \begin{cases}0 & \text { if } i=j \\ \alpha_{e} & \text { where }(i, j)=e \in E \\ \infty & \text { where }(i, j)=e \notin E\end{cases}
$$

Recursive description

Assume we have a function
shortestPath(i, j, k)
which finds the shortest path distance from i to j using only the nodes $\{1,2, \ldots, k\}$, where shortestPath $(i, j, 0)=d(i, j)$, the distance of the direct link if it exists and ∞ otherwise. Then Floyd-Warshall computes

$$
\begin{aligned}
\operatorname{shortestPath}(i, j, k+1)= & \min (\\
& \quad \operatorname{shortestPath}(i, j, k), \\
& \quad \operatorname{shortestPath}(i, k+1, k)+ \\
\quad & \quad \operatorname{shortestPath}(k+1, j, k)
\end{aligned}
$$

Shortest Paths

As written, the algorithm is only finding the distance - its doesn't actually tell us the path itself

- Results of algorithm must be a sink tree
- a "sink" is a destination
- we get a tree leading to the destination
- must be a tree: can't have loops
- We can represent a tree by listing each nodes "parent"
- here we call it a predecessor
- the node immediately before it in the path
- We get one such tree per destination, so we need to store a matrix of predecessor nodes we will call V, where
$V_{i j}=$ the predecessor of node i on the path to destination j
A zero will indicate we haven't found a path.

Floyd-Warshall

Let $D_{i j}^{(k)}$ denote the shortest path length from node i to node j using intermediate nodes from 1 to k only.

Initialise: $D_{i j}^{(0)}=d_{i j} \quad \forall i, j \in N$

$$
V^{(0)}=[0] \text {, an }|N| \times|N| \text { zero matrix. }
$$

Step: for $k=1,2, \ldots n$, compute new distance estimates

$$
D_{i j}^{(k)}=\min \left\{D_{i j}^{(k-1)}, D_{i k}^{(k-1)}+D_{k j}^{(k-1)}\right\} \quad \forall i \neq j
$$

Compute the predecessor nodes
If $D_{i j}^{(k)}<D_{i j}^{(k-1)}$ then

$$
V_{i j}^{(k)}=k
$$

else

$$
V_{i j}^{(k)}=V_{i j}^{(k-1)}
$$

Floyd-Warshall

- The initialisation step gives the shortest path lengths subject to no intermediate nodes
- For a given $k, D_{i j}^{(k-1)}$ gives the shortest path from i to j using only nodes 1 through $k-1$ as possible intermediate nodes.
- On allowing node k as an intermediate node, either k IS on the shortest path, or it isn't.
- it isn't: keep the same distance, and path

$$
\star D_{i j}^{(k)}=D_{i j}^{(k-1)} \text { and } V_{i j}^{(k)}=V_{i j}^{(k-1)}
$$

- it is: the new path must be made of two shortest paths, joined by node k, i.e. $i-k$ and $k-j$
$\star D_{i j}^{(k)}=D_{i k}^{(k-1)}+D_{k j}^{(k-1)}$
$\star V_{i j}^{(k)}$ shows where the join occurred

Floyd-Warshall

- The 0 's in $V^{(n)}$ determine the adjacencies (links) in the final network.
- $V_{i j}^{(n)}$ indicates that we never found a shorter path than $d_{i j}$ along the direct path.
- hence i and j are adjacent in the SPF tree
- The other terms in $V^{(n)}$ show the predecessor nodes for each end-to-end path.
- construct paths, by concatenating predecessor nodes

Floyd-Warshall example

Floyd-Warshall example

Initially, we put direct links into the matrix D

$V^{(0)}=$| | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | | 0 | 0 | 0 | 0 |
| 3 | | | 0 | 0 | 0 |
| 4 | | | | 0 | 0 |
| 5 | | | | | 0 |

Floyd-Warshall example

$\mathrm{k}=1$: include node 1 on existing direct paths (so any path already containing node 1 e.g. top line and first column of D, can be ignored). Here, nothing changes.

$$
V^{(1)}=\begin{array}{c|ccccc}
& 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 \\
2 & & 0 & 0 & 0 & 0 \\
3 & & & 0 & 0 & 0 \\
4 & & & & 0 & 0 \\
5 & & & & & 0
\end{array}
$$

Floyd-Warshall example

$k=2$: try including node 2 on existing paths (so any path already containing node 2 e.g. line 2 and second column of D, can be ignored).

$D_{i j}^{(2)}=$| | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 6 | 3 | 10 | 7 |
| 2 | | 0 | 2 | 4 | 1 |
| 3 | | | 0 | 1 | 3 |
| 4 | | | | 0 | 5 |
| 5 | | | | 0 | |

$V^{(2)}=$| | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 2 | 2 |
| 2 | | 0 | 0 | 0 | 0 |
| 3 | | | 0 | 0 | 2 |
| 4 | | | | 0 | 0 |
| 5 | | | | | 0 |

Floyd-Warshall example

$k=3$: try including node 3 on existing paths (so any path already containing node 3 e.g. line 3 and third column of D, can be ignored).

E.G. The old path joining 4-5 was a direct link with distance $D_{45}^{(2)}=5$. But when we are allowed to include node 3 , we get an alternative $D_{43}^{(2)}+D_{35}^{(2)}=4$, which is better, so we set $D_{45}^{(3)}=4$, and $V_{45}^{(3)}=3$.

Floyd-Warshall example

$k=4$: try including node 4 on existing paths:
No changes.

Floyd-Warshall example

$k=5$: try including node 5 on existing paths. The entries $D_{i j}^{(5)}$ give the length of the shortest path from each node i to each other node j.

$$
D_{i j}^{(5)}=\begin{array}{r|rrrrr}
& 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & 5 & 3 & 4 & 6 \\
2 & & 0 & 2 & 3 & 1 \\
3 & & 0 & 1 & 3
\end{array} \quad V^{(5)}=\begin{array}{r|rrrrrr}
& 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 0 & 3 & 0 & 3 & 3 \\
2 & & 0 & 0 & 3 & 0 \\
3 & & & 0 & 4
\end{array} \quad \begin{aligned}
& 0 \\
& 4 \\
& 5
\end{aligned}
$$

Use the boxed zero entries in the final V to determine links: $(1,3),(2,3)$, $(2,5),(3,4)$.

Floyd-Warshall shortest paths

Floyd-Warshall complexity

- In calculating $D_{i j}^{(k)}$ at each step, we need to compare two possibilities for each of $\frac{|N|(|N|-1)}{2}$ pairs of nodes.
- The algorithm has $|N|$ steps
- Total computational complexity is $O\left(|N|^{3}\right)$.
- This is OK for a dense graph $E=O\left(N^{2}\right)$ but we can do much better for sparse graphs

Further reading I

國 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson, Introduction to algorithms, 2nd ed., McGraw-Hill Higher Education, 2001.

