Assignment 1: Solutions

TOTAL MARKS: 0

1. Solutions:
(a) Problem a1898629

Edge list: $(2,1)(2,4)(6,4)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

(b) Problem a1897413

Edge list: $(2,4)(2,6)(4,3)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(c) Problem a1932791

Edge list: $(2,4)(4,2)(6,1)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(d) Problem a1871789

Edge list: $(1,4)(1,6)(5,4)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(e) Problem a1734046

Edge list: $(1,2)(1,3)(4,1)(5,2)(6,2)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(f) Problem a1820798

Edge list: $(3,2)(4,2)(6,4)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

(g) Problem a1825938

Edge list: $(1,4)(4,2)(5,6)(6,1)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(h) Problem a1813487

Edge list: $(1,3)(3,6)(5,2)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(i) Problem a1871781

Edge list: $(2,1)(3,2)(3,6)(5,2)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(j) Problem a1907611

Edge list: $(1,2)(1,5)(5,3)(6,2)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(k) Problem a1709218

Edge list: $(2,1)(3,1)(3,6)(6,5)$ Adjacency matrix:

$$
A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

2. For a fully-meshed (undirected) network with $|N|$ nodes the number of links is $|N|(|N|-1) / 2$. Determine the number of loop-free paths $|P|$.
Solution: Let us consider the number of paths $\left|P_{i j}\right|$ between one pair of nodes i and j. We consider these paths in order of length. For convenience of notation, let $n=|N|$.

- length 1: there is exactly one path of length 1 (the direct path).
- length 2: for $n \geq 3$ we may use each of the nodes $k \neq i, j$ only once on the path, and so there are $n-2$ possible such paths.
- length 3: for $n \geq 4$ we may use any pair of the nodes $k \neq i, j$ in a path, in any order, and so the number of paths of length three is the number of 2 element permutations of $n-2$ nodes, i.e. $\frac{(n-2)}{(n-2-2)!}=(n-2)(n-3)$.
- length 4: for $n \geq 5$ we may use any three of the nodes $k \neq i, j$ in a path, and so there are $\frac{(n-2)}{(n-2-3)!}=(n-2)(n-3)(n-4)$ possible paths.
- ≥ 4 : we can see the repeating pattern in the above series. The longest possible path has $n-2$ nodes ($n-1$ links) with $(n-2)$! possible orderings.

To obtain the total number of paths we must add all of these terms, which gives

$$
\left|P_{i j}\right|=\sum_{m=0}^{n-2} \frac{(n-2)!}{(n-2-m)!}=(n-2)!\sum_{m=0}^{n-2} \frac{1}{(n-2-m)!}=(n-2)!\sum_{m=0}^{n-2} \frac{1}{m!}
$$

Now, the sum $\sum_{m=0}^{n-2} \frac{1}{m!} \rightarrow e$, very quickly, and so the total number of paths goes like

$$
\left|P_{i j}\right| \sim e(n-2)!
$$

The network is completely connected, and therefore the above result holds for any pair of nodes. There are exactly $n(n-1)$ such pairs of nodes, and so the total number of paths in the network will be $|P|=\left|P_{i j}\right| n(n-1)=e n$!, which, as you might know is a very large number, even for relatively small values of n.
We can also see that a lot of the paths come from the longer paths. There are many more longer paths than shorter, and so by using shortest-path like routing, we eliminate many possible paths from consideration.
We could approximate the above expression further using Stirling's approximation: for large n

$$
\ln n!\simeq n \ln n-n
$$

and hence

$$
e n!\simeq \frac{n^{n}}{e^{n-1}}
$$

I would also accept that from the expression above, the largest term is n !, and so the asymptotic limit is $O(n!)$, but this is not quite as good as the above.
3. Computational time is usually calculated using the worst case performance:

- Edge list: in order to remove the edge, we must search for it in the edge list. Presuming this list is stored as a list (not a sorted tree or some other more efficient means) finding the correct entry will take $|E|$ test in the worst case. Removing an item from a list is an $O(1)$ operation, so the time is dominated by the search, and is $O(|E|)$.
- Adjacency matrix: removing an edge requires that we access the appropriate term in the matrix, which requires indexing into the matrix (an $O(1)$ task) and changing a 1 to a 0 (and $O(1)$ task).
- Neighbourhood list: Presume a reference to each node is stored in a sorted array, we can access the i th element by indexing into this array (an $O(1)$) operation. Then we need to find the destination node in the list of neighbours, but in the worst case all of the other nodes are neighbours of i, and hence we need to search a list which is $O(|N|)$ long. Removing the link is $O(1)$ and so the total will be dominated by the search, i.e., $O(|N|)$.

