
Complex-Network Modelling and Inference: 2024 1

Assignment 2: Solutions

TOTAL MARKS: 0

1. Solutions:

• Problem a1898629
Edge list: (1,2) (1,3) (2,6) (4,1) (4,6) (5,4) (6,4) (6,5)
in-degree: 1, 1, 1, 2, 1, 2,
out-degree: 2, 1, 0, 2, 1, 2,
DFS (first node with out-degree == 0): 3

• Problem a1897413
Edge list: (1,2) (1,5) (1,6) (2,4) (3,1) (3,1) (4,3) (4,3) (5,6) (6,4)
in-degree: 2, 1, 2, 2, 1, 2,
out-degree: 3, 1, 2, 2, 1, 1,
DFS (first node with out-degree == 0): Inf

• Problem a1932791
Edge list: (1,4) (1,5) (2,5) (3,6) (4,1) (4,2) (5,3) (5,4) (6,2)
in-degree: 1, 2, 1, 2, 2, 1,
out-degree: 2, 1, 1, 2, 2, 1,
DFS (first node with out-degree == 0): Inf

• Problem a1871789
Edge list: (1,3) (1,5) (2,4) (3,4) (3,6) (4,1) (4,5) (5,3) (6,2)
in-degree: 1, 1, 2, 2, 2, 1,
out-degree: 2, 1, 2, 2, 1, 1,
DFS (first node with out-degree == 0): Inf

• Problem a1734046
Edge list: (1,1) (1,2) (1,3) (1,4) (2,1) (3,6) (4,5) (5,1) (6,2)
in-degree: 3, 2, 1, 1, 1, 1,
out-degree: 4, 1, 1, 1, 1, 1,
DFS (first node with out-degree == 0): Inf

• Problem a1820798
Edge list: (1,4) (1,6) (2,3) (3,1) (4,5) (5,6) (6,1) (6,2) (6,6)
in-degree: 2, 1, 1, 1, 1, 3,
out-degree: 2, 1, 1, 1, 1, 3,
DFS (first node with out-degree == 0): Inf

• Problem a1825938
Edge list: (1,4) (1,5) (1,6) (2,4) (2,4) (4,1) (4,2) (4,3) (5,2) (6,1)
in-degree: 2, 2, 1, 3, 1, 1,
out-degree: 3, 2, 0, 3, 1, 1,
DFS (first node with out-degree == 0): 3

• Problem a1813487
Edge list: (1,3) (1,5) (2,1) (2,4) (3,4) (4,5) (5,2) (5,5) (5,6) (6,2)
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in-degree: 1, 2, 1, 2, 3, 1,
out-degree: 2, 2, 1, 1, 3, 1,
DFS (first node with out-degree == 0): Inf

• Problem a1871781
Edge list: (1,4) (1,6) (2,5) (3,5) (4,1) (4,2) (5,2) (5,6) (6,3) (6,4)
in-degree: 1, 2, 1, 2, 2, 2,
out-degree: 2, 1, 1, 2, 2, 2,
DFS (first node with out-degree == 0): Inf

• Problem a1907611
Edge list: (1,2) (2,3) (3,3) (3,4) (3,4) (4,3) (4,6) (5,1) (6,5)
in-degree: 1, 1, 3, 2, 1, 1,
out-degree: 1, 1, 3, 2, 1, 1,
DFS (first node with out-degree == 0): 1

• Problem a1709218
Edge list: (1,2) (1,3) (1,4) (2,1) (2,1) (3,6) (4,2) (6,5)
in-degree: 2, 2, 1, 1, 1, 1,
out-degree: 3, 2, 1, 1, 0, 1,
DFS (first node with out-degree == 0): 5

Code to solve the problem is included below. Please note that this is written to be obvious, not
efficient.

Also note that the code implicitly assumes the graph is strongly connected. The graphs you
were given are not strongly connected, but that’s why I asked you to search for the out-degree
0 nodes, because those were the likely points at which the code would break.

In general, when you find a dfs has stopped, you would restart it again much like the connected
components algorithm.



Complex-Network Modelling and Inference: 2024 3

function [n, labels] = dfs(A, s, labels)

%

% dfs.m, (c) M Roughan, 2017

%

% created: Thu Aug 3 2017

% author: M Roughan

% email: matthew.roughan@adelaide.edu.au

%

% DFS

% DFS, presuming the graph is strongly connected

%

% INPUTS:

% A = adjacency matrix

% A[i,j] = 1 => there is a link from i to j

% n>1 => the link has multiplicity n

% s = a start node

% labels = a nx1 vector of 1/0 with 1 indicating that we have already explored that node

%

% OUTPUTS:

% The first node found with out-degree 0

%

%

%

if nargin < 2

s = 1;

labels = zeros(1,size(A,1));

end

labels(s) = 1;

tmp = A(s,:);

out_degree = sum(tmp);

if out_degree == 0

n = s;

return

end

k = find( tmp & (1-labels) ); % unlabelled, adjacent nodes

if isempty(k)

n = Inf;

return

else

for i=1:length(k)

[n, labels] = dfs(A, k(i), labels);

if isfinite(n)

return

end

end

end
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2. (a) Presume that the graph is represented as a neighbourhood list, that is we have an array of
nodes, each of which has an associated list of neighbours.

First, we can calculate the degrees of each node to check for balance in O(e) time: for
each node we add up the number of items on its neighbourhood list, but the total of these
additions cannot be larger than the number of edges. If balanced, then proceed, otherwise
return that there is no cycle. We could also check for connectedness here, which will be
O(n), but we don’t need to include these in the algorithm, as we can presume that the
graph is balanced and connected.

Finding a cycle involves picking an edge (easiest to be first) from unused edges at each
node. If we maintain a pointer to the start of the unused part of each list, then choosing
and edge, and moving the pointer are O(1) operations. We must also check if we have
returned to the start node, again an O(1) operation. So following a path of length m takes
O(m) operations.

We next must find a node which has unused edges directed from it. If we search for it at
this point, the worst case would be O(n). However, if we also maintain a list of nodes (on
the existing tour) that have unused edges, we can find a new node in O(1) time.

Maintain the current path as a doubly-linked list. Then stitching together two can also be
performed in O(1) time, so the overall complexity is O(e).

(The algorithm is called Hierholzer’s algorithm)

(b) Solutions:

• Problem a1898629
Edge list: (1,3) (2,6) (4,1) (4,6) (5,4) (6,4) (6,5)
Eulerian path (generator): 2, 6, 4, 6, 5, 4, 1, 3,
Eulerian path (alternative): 2, 6, 4, 6, 5, 4, 1, 3,

• Problem a1897413
Edge list: (1,5) (1,6) (2,4) (3,1) (3,1) (4,3) (4,3) (5,6) (6,4)
Eulerian path (generator): 2, 4, 3, 1, 6, 4, 3, 1, 5, 6,
Eulerian path (alternative): 2, 4, 3, 1, 6, 4, 3, 1, 5, 6,

• Problem a1932791
Edge list: (1,5) (2,5) (3,6) (4,1) (4,2) (5,3) (5,4) (6,2)
Eulerian path (generator): 4, 1, 5, 4, 2, 5, 3, 6, 2,
Eulerian path (alternative): 4, 1, 5, 3, 6, 2, 5, 4, 2,

• Problem a1871789
Edge list: (1,5) (2,4) (3,4) (3,6) (4,1) (4,5) (5,3) (6,2)
Eulerian path (generator): 3, 6, 2, 4, 1, 5, 3, 4, 5,
Eulerian path (alternative): 3, 6, 2, 4, 5, 3, 4, 1, 5,

• Problem a1734046
Edge list: (1,1) (1,2) (1,3) (2,1) (3,6) (4,5) (5,1) (6,2)
Eulerian path (generator): 4, 5, 1, 2, 1, 1, 3, 6, 2,
Eulerian path (alternative): 4, 5, 1, 3, 6, 2, 1, 1, 2,

• Problem a1820798
Edge list: (1,6) (2,3) (3,1) (4,5) (5,6) (6,1) (6,2) (6,6)
Eulerian path (generator): 4, 5, 6, 6, 1, 6, 2, 3, 1,
Eulerian path (alternative): 4, 5, 6, 1, 6, 2, 3, 1,
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• Problem a1825938
Edge list: (1,4) (1,5) (2,4) (2,4) (4,1) (4,2) (4,3) (5,2) (6,1)
Eulerian path (generator): 6, 1, 5, 2, 4, 2, 4, 1, 4, 3,
Eulerian path (alternative): 6, 1, 4, 1, 5, 2, 4, 2, 4, 3,

• Problem a1813487
Edge list: (1,3) (2,1) (2,4) (3,4) (4,5) (5,2) (5,5) (5,6) (6,2)
Eulerian path (generator): 5, 2, 4, 5, 5, 6, 2, 1, 3, 4,
Eulerian path (alternative): 5, 2, 4, 5, 5, 6, 2, 1, 3, 4,

• Problem a1871781
Edge list: (1,6) (2,5) (3,5) (4,1) (4,2) (5,2) (5,6) (6,3) (6,4)
Eulerian path (generator): 4, 1, 6, 3, 5, 6, 4, 2, 5, 2,
Eulerian path (alternative): 4, 1, 6, 3, 5, 2, 5, 6, 4, 2,

• Problem a1907611
Edge list: (2,3) (3,3) (3,4) (3,4) (4,3) (4,6) (5,1) (6,5)
Eulerian path (generator): 2, 3, 4, 3, 3, 4, 6, 5, 1,
Eulerian path (alternative): 2, 3, 3, 4, 3, 4, 6, 5, 1,

• Problem a1709218
Edge list: (1,2) (1,3) (2,1) (2,1) (3,6) (4,2) (6,5)
Eulerian path (generator): 4, 2, 1, 2, 1, 3, 6, 5,
Eulerian path (alternative): 4, 2, 1, 2, 1, 3, 6, 5,

Code to solve the problem is included below. Please note that this is written to be obvious,
not efficient.

function walk = euler_walk(A)

%

% euler.m, (c) M Roughan, 2017

%

% created: Thu Aug 3 2017

% author: M Roughan

% email: matthew.roughan@adelaide.edu.au

%

% EULER

% find an Euler path through the nodes

%

% INPUTS:

% A = adjacency matrix

% A[i,j] = 1 => there is a link from i to j

% n>1 => the link has multiplicity n

%

% OUTPUTS:

% walk = vector containing the nodes on the Eulerian walk

%

%

[in_degree, out_degree] = degree(A);

total_edges = sum(in_degree);
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d = in_degree - out_degree;

k = find( d ~= 0 );

if length(k) ~= 2

walk = NaN;

return; % no path walk exists

end

start = find( d == -1 );

stop = find( d == 1 );

if length(start)~=1 || length(stop)~=1

walk = Inf;

return; % no path walk exists

end

% find an initial walk from start to stop nodes

i = start;

walk = [i];

path_length = 0;

while i~=stop && path_length<=total_edges

i_old = i;

i = find(A(i_old,:)>0, 1);

walk = [walk, i];

A(i_old, i) = A(i_old, i) - 1;

path_length = path_length + 1;

end

walk;

path_length;

total_edges;

% now, while we haven’t finished, try again

while path_length < total_edges

% walk

% A

% find a point to start a side loop

current_nodes = unique(walk);

tmp = sum(A,2)’;

choice = intersect(walk, find(tmp(current_nodes)>0)); % a node in current walk with >0 out degree

choice = choice(1);

k = find(choice == walk, 1);

loop = [];

i = 0;

i_old = choice;

while i~=choice

i = find(A(i_old,:)>0, 1);

loop = [loop, i];

A(i_old, i) = A(i_old, i) - 1;

path_length = path_length + 1;

i_old = i;

end

% A(i, choice) = A(i, choice) - 1;
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path_length = path_length + 1;

% loop

if k==length(walk)

walk = [walk(1:k), loop];

else

walk = [walk(1:k), loop, walk(k+1:end)];

end

end

3. The figure below shows the de Brujin graph of the reads.

AT
TG GG

AC TCGA TT
ATG

TGG
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GGA
TTC
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CTT
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CT
TGA

There are two possible solutions:

ATGGACTGACTTC

ATGACTGGACTTC

I used the first solution when generating this problem.

4. (a) There are nk possible k-mers, but each must follow from the last, so each k-mer only
introduces one new symbol (as prefixes must meet suffixes cyclically) into the universal
string, and hence the string will be of length nk.

(b) Given we are dealing with k-mers, the prefixes and suffixes are a single character, i.e., the
set {a, b, c}, so we can create a de Brujin graph specifying all possible 2-mers as follows:

a

b

c
As we will generate circular strings, we could start at any node, and we trace an Eulerian
walk. There are several possibilities, e.g., the one corresponding to the walk above is

aaccabcbb


