
Optimisation and Operations Research
Lecture 18: Branch and Bound

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http:

//www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/

School of Mathematical Sciences,
University of Adelaide

August 13, 2019

http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/
http://www.maths.adelaide.edu.au/matthew.roughan/notes/OORII/


Section 1

Branch and Bound

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 2 / 37



Are “heuristics” the only approach?

We are solving ILPs (Integer Linear Programs)

So far have considered heuristics
I assumption is there is no tractable method to guarantee a solution
I but complexity analysis is about “worst case”
I also, we might have

O
(
exp(n)

)
= 0.0000000001× en

I typical cases might be quite tractable

So can we find an algorithm that works well when the problem is
notionally NP-hard, but the particular instance isn’t too bad?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 3 / 37



Example ILP

Example

Consider the Knapsack Problem we considered earlier (which is a Binary
Linear Program). A hiker can choose from the following items:

Item
1

chocolate
2

raisins
3

camera
4

jumper
5

drink

wi (kg) 0.5 0.4 0.8 1.6 0.6

vi (value) 2.75 2.5 1 5 3.0

vi/wi 5.5 6.25 1.25 3.125 5

The hiker wants to maximise the value of the carried items subject to a
total weight constraint of 2.5 kg, i.e., in general solve

max

{∑
i

vizi

∣∣∣∑
i

wizi ≤W , zi = 0 or 1

}
where the zi are binary indicator variables for each item.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 4 / 37



Let’s see what AMPL/lpsolve does
INPUT:

param n; # the parameters are set

param w{i in 1..n}; # in a .dat file

param v{i in 1..n};

param W;

var z{i in 1..n} >= 0 binary;

maximize value: sum{i in 1..n} v[i]*z[i];

subject to weight: sum{i in 1..n} w[i]*z[i] <= W;

OUTPUT:

LP_SOLVE 4.0.1.0: optimal, objective 10.25

12 simplex iterations

3 branch & bound nodes: depth 2

SOLUTION: z = (1, 1, 0, 1, 0)T and the value is 10.25
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 5 / 37



Branch and Bound

lpsolve is using a method called “Branch & Bound”
I it found the optimum solution
I it “knows” it is the correct solution
I somehow it used Simplex on the way?

The goal of this lecture is to explain B&B

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 6 / 37



Branching

Imagine we are solving a Binary Linear Program, e.g.,

(BLP) z∗ = max
{
cTx

∣∣ Ax ≤ b, x ≥ 0, x ∈ {0, 1}n
}

Then we can enumerate all of the possible solutions on a tree

0 1

0

0 0 0 0

1 0 1

1 1 1 1
000 001 010 011 100 101 110 111

But there are 2n solutions – we can’t evaluate them all

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 7 / 37



Branching and Pruning

Imagine we are solving a Binary Linear Program, e.g.,

(BLP) z∗ = max
{
cTx

∣∣ Ax ≤ b, x ≥ 0, x ∈ {0, 1}n
}

What if we could eliminate some sub-branches

0 1

0

0 0 0 0

1 0 1

1 1 1 1
000 001 010 011 100 101 110 111

We don’t have to search the whole tree

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 8 / 37



Branching and Pruning

Pruning reduces the search space
I hopefully to the point where we can search the entire space

Requires
I a method to branch for general ILPs

F binary branching, even when the problem isn’t binary

I a method to find “solutions” part way down a branch
I a method to determine when a branch can be pruned

F we will use bounds created by relaxations

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 9 / 37



Branching of ILPs

Branching of Binary IPs
I pick a variable zi
I left branch has zi = 0, right branch has zi = 1
I in either case zi is no longer a “variable”
I we have partitioned the feasible solutions into two sets

F divide and conquer

Generalise the idea for Integer LPs
I partition the set into two parts
I pick a variable xi and a divider c (which is NOT an integer)
I left branch is xi ≤ bcc and right branch is xi ≥ dce

bcc = the floor of c

dce = the ceiling of c

I xi is still a variable, but on a restricted space

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 10 / 37



Example ILP

Example

Consider the Integer Linear Program

max z = x + y

s.t. −x + 2y ≤ 8
23x + 10y ≤ 138

for non-negative integers x and y .
Branch on x at c = 3.5, and we get two new LPs max z = x + y such that

−x + 2y ≤ 8
23x + 10y ≤ 138

x ≤ 3
and

−x + 2y ≤ 8
23x + 10y ≤ 138
x ≥ 4

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 11 / 37



Relaxation: a reminder

Relaxation means defining a new problem with some of the original
constraints dropped

I in this context, we drop some of the integrality constraints

Example (continued)

max z = x + y

s.t. −x + 2y ≤ 8
23x + 10y ≤ 138

x , y ∈ Z+

Relax the integer constraints, i.e., form a new problem (LP0) with
x , y ∈ R+. Solving (LP0) gives the optimal solution as

z∗0 = 9
1

4
at (x∗0 , y

∗
0 )T =

(
3

1

2
, 5

3

4

)T

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 12 / 37



Relaxation issues

Relaxation means defining a new problem with some of the original
constraints dropped

I in this context, we drop some of the integrality constraints

Remember that in relaxing an ILP to a LP
I the solution to the LP might not be close to that of the ILP
I a feasible LP might not indicate a feasible ILP

So relaxation by itself isn’t a good approach to solve an ILP
I but we can use these to generate “partial” solutions to help search for

a fully feasible solution

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 13 / 37



What can we tell from a relaxation?

For each Integer Linear Program:

(ILP) z∗ = max{cTx | Ax ≤ b, x ≥ 0, x ∈ Zn}
there is an associated relaxed Linear Program:

(LP0) z∗0 = max{cTx | Ax ≤ b, x ≥ 0, x ∈ Rn}

Now, (LP0) is less constrained than the (ILP) so

If (LP0) is infeasible, then so is (ILP)

If (LP0) is optimised by integer variables, then that solution is feasible
and optimal for the (ILP)

The optimal objective value for (LP0) is greater than or equal to the
optimal objective for the (ILP)

z∗0 ≥ z∗

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 14 / 37



Relaxation Gives Bounds

The relaxed problem is a LP
I we know how to solve this, e.g., Simplex

The relaxed LP tells us something about the ILP
I it doesn’t give the solution
I it does provide an upper bound on the solution

Example (continued)

Solving (LP0) gives the optimal solution as

z∗0 = 9
1

4
at (x∗0 , y

∗
0 )T =

(
3

1

2
, 5

3

4

)T

The ILP has solution
z∗ = 8 ≤ z∗0

We can use the bounds to prune branches

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 15 / 37



Branch and Bound

Keep a list of subproblems resulting from branching, and work on
these one by one

I solve relaxed versions to get upper bounds
I sometimes we might also get an integer solution

key: if upper bound of a subproblem is less than objective for a
known integer feasible solution, then

I the subproblem cannot have a solution greater than the already known
solution

I we can eliminate this solution
I we can also prune all of the tree below the solution

it lets us do a non-exhaustive search of the subproblems
I if we get to the end, we have a proof of optimality without exhaustive

search

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 16 / 37



Branch and Bound: algorithm

1. Initialization: initialize variables, in particular, start a list of
subproblems, initialized with our original integer program.

2. Termination: terminate the program when we reach the optimum
(i.e., the list of subproblems is empty).

3. Problem selection and relaxation: select the next problem from the
list of possible subproblems, and solve a relaxation on it.

4. Fathoming and pruning: eliminate branches of the tree once we prove
they cannot contain an optimal solution.

5. Branching: partition the current problem into subproblems, and add
these to our list.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 17 / 37



Branch and Bound: example

Consider the problem (from [LM01])

IP0


maximize 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 0, x2 ≥ 0
x1, x2 integer

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 18 / 37



Branch and Bound: algorithm

Initialization:

initialize the list of problems L
I set initially L = {IP0}, where IP0 is the initial problem
I often store/picture L as a tree

incumbent objective value zip = −∞
I best (integer) solution we have found so far
I initial value is the worst possible

initial value of upper bound on problem is z̄0 =∞
I If the upper bound of a solution z̄i < zip then this problem IPi (and its

dependent tree) obviously cannot achieve the same objective value that
we have already achieved elsewhere in our solutions.

constraint set of problem IP0 is set to be

S0 = {x ∈ Zn|Ax ≤ b, x ≥ 0}

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 19 / 37



Branch and Bound: algorithm

Termination:

If L = φ then we stop
I If zip = −∞ then the integer program is infeasible.

F our search didn’t find an integer feasible solution

I Otherwise, the subproblem IPi which yielded the current value of zip is
optimal gives the optimal solution x∗

We stop branch and bound when we have run out of subproblems (which
are listed in L ) to solve, i.e., when L is empty.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 20 / 37



Branch and Bound: algorithm

Problem selection:

select a problem from L
I there are multiple ways to decide which problem to choose from the list

F the method used can have a big impact on speed

I once selected, delete the problem from the list

Relaxation:

solve a relaxation of the problem
I denote the optimal solution by xiR

I denote the optimal objective value by zRi
F zRi = −∞ if no feasible solutions exist

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 21 / 37



Branch and Bound: algorithm

For the example

IP0


maximize 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 0, x2 ≥ 0
x1, x2 integer

the relaxation is

LP0


maximize z = 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 0, x2 ≥ 0

which has solutions x0R1 = 2.5 and x0R2 = 3.75 with zR0 = 62.5

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 22 / 37



Branch and Bound: algorithm

Fathoming :
we say branch of the tree is fathomed if

I infeasible
I feasible solution, and zRi ≤ zip
I integral feasible solution

F set zip ← max{zip, zRi }

Pruning:
in any of the cases above, we need not investigate any more
subproblems of the current problem

I subproblems have more constraints
I their z must lie under the upper bound

Prune any subtrees with zRj ≤ zip

If we pruned Goto step 2

We don’t prune the example yet (see later for complete example).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 23 / 37



Branch and Bound: algorithm

Branching:

also called partitioning

want to partition the current problem into subproblems
I there are several ways to perform partitioning

If S i is the current constraint set, then we need a disjoint partition
{S ij}kj=1 of this set

I we add problems {IPij}kj=1 to L
I typically k = 2 for binary branching
I IPij is just IPi with its feasible region restricted to S ij

Goto step 2

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 24 / 37



Branch and Bound: example

Consider the problem (from [LM01])

IP0


maximize 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 0, x2 ≥ 0
x1, x2 integer

with relaxation

LP0


maximize z = 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 0, x2 ≥ 0

which has solutions x01 = 2.5 and x02 = 3.75 with zR0 = 62.5

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 25 / 37



Branch and Bound: algorithm
In the example we partition on x1

this is the “most infeasible”
I furthest from an integral value (because x01 = 2.5)

partition into two subproblems around c = 2.5
I IP1 has x1 ≥ 3
I IP2 has x1 ≤ 2

So now L = {IP1, IP2}

x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

21

LP relaxation solution
2.5 3.75z = 62.5R

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 26 / 37



Branch and Bound: example

x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

21

LP relaxation solution
2.5 3.75z = 62.5R

L = {IP1, IP2}
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 27 / 37



Branch and Bound: example

Problem selection (just chose in order) of IP1

IP1



maximize 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 3

x1 ≥ 0, x2 ≥ 0
x1, x2 integer

The relaxation (to a LP) has solutions
x11 = 3 and x12 = 2.5 with zR1 = 59

we will next partition on x2
I IP3 has x2 ≤ 2
I IP4 has x2 ≥ 3

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 28 / 37



Branch and Bound: example

x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R

21

LP relaxation solution
2.5 3.75

1 2

LP soln
x = 3,  x  = 2.5

z = 62.5R

22

11x >= 3
x >= 3 x <= 2

x >= 3

L = {IP2, IP3, IP4}
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 29 / 37



Branch and Bound: example

Problem selection (best bound) of IP2

IP2



maximize 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≤ 2

x1 ≥ 0, x2 ≥ 0
x1, x2 integer

The relaxation (to a LP) has solutions
x21 = 2 and x22 = 4 with zR2 = 58

integral feasible

So set zip = 58

And IP2 is fathomed
I no more subproblems

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 30 / 37



Branch and Bound: example

x =      ,  x  = 

x = 2,  x  = 4

IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

21

LP relaxation solution
2.5 3.75

1 2

LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

z = 62.5R

2

LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

L = {IP3, IP4}
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 31 / 37



Branch and Bound: example

Problem selection (order) of IP3

IP3



maximize 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 3
x2 ≥ 3

x1 ≥ 0, x2 ≥ 0
x1, x2 integer

The relaxation (to a LP) is infeasible
zR3 = −∞
IP3 is fathomed

L = {IP4}

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 32 / 37



Branch and Bound: example

Problem selection (only possible one) of IP4

IP4



maximize 13x1 + 8x2
subject to x1 + 2x2 ≤ 10

5x1 + 2x2 ≤ 20
x1 ≥ 3
x2 ≤ 2

x1 ≥ 0, x2 ≥ 0
x1, x2 integer

The relaxation (to a LP) has solution

x21 = 3.2 and x22 = 2 with zR4 = 57.6 < zip

IP4 is fathomed

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 33 / 37



Branch and Bound: example

x =      ,  x  = 

x = 2,  x  = 4

IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

z = 57.6R

21

LP relaxation solution
2.5 3.75

1 2

LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

1

LP soln
3.2x =     ,  x  = 22

z = 62.5R

2

LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

infeasible
=> fathomed => fathomed

R
ipz  < z

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 34 / 37



Branch and Bound: example

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0

10

20

30

40

50

60

x
2

x
1

z=58

z

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 35 / 37



Takeaways

B&B uses pruning to perform a non-exhaustive search
I we can prune branches when they are

F infeasible
F integer feasable
F their upper bound (on their relaxation) is less than an existing solution

More on B&B in the next lecture

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 36 / 37



Further reading I

Eva K. Lee and John Mitchell, Encyclopedia of optimization,
ch. Branch-and-bound methods for integer programming, Kluwer Academic
Publishers, 2001, http://www.rpi.edu/~mitchj/papers/leeejem.html.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)OORII August 13, 2019 37 / 37

http://www.rpi.edu/~mitchj/papers/leeejem.html

	Branch and Bound

