Discussion

- What was the point Kleinrock was trying to make?
- How does it stand up today?

Modeling Telecommunications Traffic

Introduction, part II

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics School of Mathematical Sciences

University of Adelaide

Modeling Telecommunications Traffic: Measurements and models - p. $1 / 50$

Lecture goals/outline

- start to understand how computer networks work
- general principles behind computer networks
- TCP/IP
- general reference [1]

http://www.warriorsofthe.net/ Copyright 2002 Gunilla Elam, Tomas Stephanson, Niklas Hanberger.

The "Internet"

What is the Internet?

- physical infrastructure
- architecture
- protocols
- software
- services/applications
- operational practices
- standards

All of the above!

Standards

Why do we need standards

- electricity plugs

- plugs are standardized, but only within a country
- the "Internet" is an international network
- need standards between countries
- everyone has to agree on one "plug"
- instead of plugs we standardize protocols - still need plugs, but these are "physical layer" - a protocol is a more general concept

IETF

2.3 Dress Code

Since attendees must wear their name tags, they must also wear shirts or blouses. Pants or skirts are also highly recommended.

Request for Comments: 3160
S. Harris, 2001

- http://www.ietf.org/
- informal standards body
- membership is open to all interested individuals
- few hard and fast rules
- publishes RFCs (Request For Comments)

Network Standards Bodies

```
■ ISOC (Internet Society)
    \square IESG (Internet Engineering Steering Group)
            IETF (Internet Engineering Task Force)
    | IAB (Internet Architecture Board)
        IRSG (Internet Research Steering Group)
            - IRTF (Internet Research Task Force)
    ICANN (Internet Corp. for Assigned Names and Numbers)
        and IANA (Internet Assigned Numbers Authority)
    http://www.ietf.org/rfc/rfc3160.txt
    http://www.acm.org/ubiquity/views/v6i5_simoneli.html
- W3C (WWW standards)
\square IEEE (Inst. of Electrical and Electronic Engineers)
            \square e.g. IEEE 802.3 (Ethernet)
■ CCITT, ITU-T (International Telecommunications Union)
\square ANSI, OSI (Open System Interconnection), OEOSC, ...
```


RFCs

- standards: RFC 791: IP, RFC 793: TCP
- best practice: RFC 1818: Best Current Practices, RFC1918: Address Allocation for Private Internets
- experimental: RFC 2498: IPPM Metrics for Measuring Connectivity
- informational: RFC 3160: The Tao of IETF ... RFC 2151: A Primer On Internet and TCP/IP Tools and Utilities
- humour: RFC 1149: Standard for the transmission of IP datagrams on avian carriers
- poetry: RFC 1121: Act One - The Poems
http://www.ietf.org/rfc.html
http://www.rfc-editor.org/

Some Important RFCs

- RFC 791: Internet Protocol (IP) Updated in RFC 1391
- RFC 793: Transmission Control Protocol (TCP) Updated in RFC 3168
- RFC 1123: Requirements for Internet Hosts Application and Support
Updated by RFC1349, RFC2181
- RFC 2328: OSPF Version 2
- RFC 1771: A Border Gateway Protocol 4 (BGP-4)
- RFC 1772: Application of the Border Gateway Protocol in the Internet

Internet Design Principles

- packet switching not circuit switching: Don't reserve bandwidth for a connection.
- layered model: with a thin waist.
- robustness principle: Be liberal in what you accept, and conservative in what you send [2, 3].
- end-to-end principle: Smart terminals, dumb network [4, 5].
- distributed control: as compared to centralized, or decentralized [5].
- deployment issues: scale, incremental deployment, heterogeneity [3].
- general issues: simplicity, modularity, performance [3].

Modeling Telecommunications Traffic: Measurements and models - p. 10/50

Packets vs circuits

- Circuit switching: logical equivalent of a phone line connects two (or more) people.
- allows network to control everything (in theory)
- allows explicit QoS
needs careful design and admission control
\square billing is easier (part of circuit setup)
- prime example is ATM
- Packet switching: no logical circuit (though there is still an analogue of a connection). Packets of data are individually switched.
- network doesn't do much (in theory)
\square hard to do QoS, but network is simpler
-prime example is IP

Packets vs circuits

Doesn't have to be one or the other

- may be ciruit switched on one layer, and packet switched on another, e.g.
- classic example is IP over ATM
- MPLS creates virtual circuits between end-points
- connections are not between end-users though
- allows multiplexing of traffic inside a connection
- multiplexed traffic is less bursty

Packets vs circuits

ROSENCRANTZ AND ETHERNET by Vint Cerf [7]

All the world's a net! And all the data in it merely packets come to store-and-forward in the queues a while and then are heard no more. 'Tis a network waiting to be switched!

To switch or not to switch? That is the question. Whether 'tis wiser in the net to suffer the store and forward of stochastic networks or to raise up circuits against a sea of packets and, by dedication, serve them.

To net, to switch. To switch, perchance to slip! Aye, there's the rub. For in that choice of switch, what loops may lurk, when we have shuffled through this Banyan net? Puzzles the will, initiates symposia, stirs endless debate and gives rise to uncontrolled flights of poetry beyond recompense!

Modeling Telecommunications Traffic: Measurements and models - p. $14 / 50$

Layered protocols: OSI model

Somewhat like subroutines in programming
\square Each layer provides services (functions) to higher layers

- Function call interface hides details of how the service is provided
- e.g. network layer asks link layer to transport a packet across a link, without any network details
\square the interface is well defined
- Benefits
- reduction in complexity
- reuse of functionality
- may be many applications on one session layer
- Communications between peers using protocols

Encapsulation

Lower layers deal with higher layer by

- treat information from higher layer as "black box".
- don't look inside data
- just treat as bunch of bits
- allowed operations on the data
- just break data into blocks
- encapsulate the blocks, by adding
\square headers (e.g. addresses)
trailers
- when passing back to higher
- layers strip headers
- join blocks back together

Layer 2: Data-link layer

Function: provide reliable transport of information between a pair of adjacent nodes.
Services: creates frames/packets, error control, flow control
Issues: Medium Access Control (MAC), headers/trailers, ...
Examples:

- Ethernet
- Token-ring
- IEEE 802.11 (Wi-Fi)
- FDDI (Fiber Distributed Data Interface)
- ATM (Asynchronous Transfer Mode) (also layer 3)
- POS (Packet over SONET)
- PPP (Point to Point Protocol)

Layer 1: Physical layer

Function: Transmission of raw bit stream between devices. Services: Physical connection, Binary modulation, frequency, Issues: \# pins/wires, duplex, serial/parallel, modulation, ... Media:

- copper wire: e.g. coax, twisted pair (CAT-3/CAT-5), RS-232, USB, firewire
- lasers (fibre optics)
- lasers (free air)
- microwave, RF, satellite, ...
- infra-red
- carrier pigeons (RFC 1149) ;-)

Layer 3: Network layer

Function: forwarding packets from end-to-end
Services: packet forwarding, some congestion control
Issues: determining what routing to use
Examples:

- IPv4 (Internet Protocol version 4)
- IPv6 (Internet Protocol version 6)
- ARP (Address Resolution Protocol)
- ATM (Asynchronous Transfer Mode) (also layer 2)
- Routing protocols (e.g. OSPF, IS-IS, RIP, EIGRP)
*** - this is the bit we care about most here!

Layer 4: Transport layer

Function: reliable end-to-end transport of data
Services: multiplexing, end-to-end error and flow control
Issues: congestion control algorithm
Examples:

- TCP (Transmission Control Protocol)
- UDP (User Datagram Protocol)
- SCTP (Stream Control Transmission Protocol)
- RTP (Real-time Transport Protocol)

Layer 6: Presentation layer

Function: specific regularly requested functions.
Services: encryption, compression, ascii<->unicode, ...
Issues: want to do compression before encryption, but compression may be done by a lower layer.
Examples:

- SSL (Secure Sockets Layer) (at a stretch)

Layer 5: Session layer

Function: combine logically connected transmissions
Services: group several connections into a session
Issues: what to use it for?
Examples:

- NFS = Network File System
- SMB = Server Message Block

Layer 7: Application layer

```
\squareE-mail (POP, IMAP, SMTP)
\square File transfer (FTP - File Transfer Protocol)
\squareRemote terminal (Telnet, SSH, ...)
\squareWWW (HTTP - Hyper-Text Transfer Protocol)
\square File sharing (Gnutella, Napster, Kazaa, ...)
\square Video conferences
| Newsgroups
-NTP (Network Time Protocol)
■ VoIP (Voice over IP)
■Games (Quake, MMORP, ...)
■ RFC 2324: Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)
```


Post office analogy

We could describe snail-mail using OSI model
e.g. sending mail to my mum.

Modeling Telecommunications Traffic: Measurements and models - $\mathrm{p} .25 / 50$

TCP/IP has 5 "layers"

Applications (WWW,e-mail,telnet, ...)	
Transport (TCP, UDP)	
Network layer (IP)	ARP
Link Layer (e.g. Ethernet, ATM, POS)	
Physical layer (e.g. CAT-5, SONET, ...)	

Post office analogy

We could describe snail-mail using OSI model
e.g. sending mail to my mum.

Modeling Telecommunications Traffic: Measurements and models - p.25/50

TCP/IP Encapsulation

TCP/IP Encapsulation

TCP/IP Encapsulation

IP header

TCP header

Modeling Telecommunications Traffic: Measurements and models - $\mathrm{p} .29 / 50$

TCP/IP operation

TCP/IP operation

LNI = Local Network Interface

Modeling Telecommunications Traffic: Measurements and models - p.30150

TCP/IP operation

Narrow Waist of IP: hourglass

- robustness against technological innovations
- anyone can innovate at either end
- new applications built by uni students (e.g. netscape, napster, ...)
- new physical/link layers
- allows huge heterogenity

■ = success

Modeling Telecommunications Traffic: Measurements and models - $\mathrm{p} .32 / 50$

Broken layering

TCP/IP layers are broken more often than not
■ ICMP - uses IP, but controls its operation

- BGP is a routing protocol (IP layer), but is routed
- IP over ATM over IP over ATM over SONET
- anything involving MPLS
- often services are provided at multiple layers: error and flow control, e.g. error control in SONET (sort-of physical), link layer, IP, TCP , ...
OSI standards are too complicated
Q: What do you get when you cross a mobster with an international standard?
A: Someone who makes you an offer you can't understand.
Paul Mockapetris

Broken layering

TCP/IP layers are broken more often than not

- ICMP - uses IP, but controls its operation
- BGP is a routing protocol (IP layer), but is routed
- IP over ATM over IP over ATM over SONET
- anything involving MPLS
- often services are provided at multiple layers: error and flow control, e.g. error control in SONET (sort-of physical), link layer, IP, TCP, ...
OSI standards are too complicated
Q: What do you get when you cross a mobster with an international standard?

What is a router?

A Juniper router in use.

Logical Router

Modeling Telecommunications Traffic: Measurements and models - $\mathrm{p} .35 / 50$

Router Architecture

High perf. architecture (input and output queueing)

Router Architecture

Common modern architecture

\square data plane control plane

Router Architecture

High perf. architecture (input and output queueing)

Line card

Procket line card

Courtesy of AARNET
Modeling Telecommunications Traffic: Measurements and models - p .39/50

Chassis

Procket Chassis

CPU

Procket CPU

Courtesy of AARNET
Modeling Telecommunications Traffic: Measurements and models - p.40/50

Per packet processing

In an IP Router

- lookup packet destination in forwarding table
- up to 150,000 entries (today)
- update header (e.g. checksum, and TTL)
- send packet to outgoing port
- buffer packet along the way

For a 10 Gbps line

- small 40 byte packets
- about 30 million packets per second
- you have ~ 30 ns per packet

Expensive bits

- forwarding table can be large
- up to 150,000 entries per line card
- lookup in ~30ns for 10 Gbps line
- need fast memory
- buffers can be large
-0.2 seconds per line card (rule of thumb)
- 10 Gbps line $=250 \mathrm{MB}$ memory (on in and out)
- need fast memory (in + out in $\sim 30 n s$)
- backplane must be faster than line cards
- N times line rate speedup (N linecards)
- to guarantee non-blocking switch fabric

Robustness principle

Be liberal in what you accept, and conservative in what you send [2].

- if some-else's software screws up, don't let this mess your system up (liberal in what you accept)
- e.g. TCP connection termination
- don't cause other systems problems (conservative in what you send)
- e.g. congestion control

Some Probability

- How do we model these packet things?
- What about queues?

End-to-end principle

Put functionality as high up the stack as possible [4].

- pushes functionality out towards the end points (logical as well as physical)
- avoid repeating functionality
- more efficient in many cases anyway
- results in
dumb network, smart terminals
- contrast to PSTN (Telephone Network)
smart network, dumb terminals
- also allows survival of partial network failures
- e.g. link failure, we can reroute
- if we avoid state in the network

Distributed control

- anything centralized is vulnerable
- don't just distribute physical infrastucture
- also distribute network control
- e.g. routing protocols
- OSPF, IS-IS, BGP, ...
- we will see more on these later
- not everything can be completely decentralized
- e.g. NOC, NCC
- still can provide redundancy

Deployment issues

- scale: has to work for a large range of networks (in distance, and number of hosts).
- IP creates "networks of networks", that can span any scale: $<1 \mathrm{~m} \rightarrow>10,000 \mathrm{~km} ; 1->10^{9}$ hosts; link speeds 9600 bps - 40 Gbps.
- incremental deployment: need to be able to deploy gradually.
- constant change in the network
- legacy networks won't go away
- heterogeneity: different technologies and applications and link speeds.
- see layers $1-2$ and 7 above.
\square link speeds covering 8 orders of magnitude.

References

[1] A. S. Tanenbaum, Computer Networks. Prentice-Hall, 3rd ed., 1996.
[2] R. Braden, "Requirements for Internet hosts - application and support." IETF, Request for Comments: 1123, 1989.
[3] B. Carpenter, "Architectural Principles of the Internet." IETF, Request for Comments: 1958, 1996.
[4] J.H. Saltzer, D. P. Reed, and D. D. Clark, "End-to-end arguments in system design," in Second International Conference on Distributed Computing Systems, pp. 509-512, April 1981
[5] D. Clarke, "The Design Principles of the DARPA Internet Protocols," Computer Communication Review, vol. 25 January 1995.
[6] W. E. Leiand, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the self-similar nature of Ethernet traffic (extended version)," IEEE/ACM Transactions on Networking, vol. 2, pp. 1-15, Feb 1994.
[7] J. Postel, L. Kleinrock, V. Cerf, and B. Boehm, "Act One - The Poems." IETF, Request for Comments: 1121, 1989.
[8] A. M. Odlyzko, "The history of communications and its implications for the Internet." http://www.dtc.umn.edu/~odlyzko/doc/networks.html.

