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FiltersFiltering is a basi
 signal pro
essing operation. We wantto ��lter out� some part of the signal so that we 
an seeother more 
learly. For instan
e, we want to �lter outthe �noise�. Common te
hniques for �ltering either usetransforms dire
tly, or in their analysis and design andthis is one of the most important appli
ations oftransform methods, but also, we will later see how we
an implement some transforms using �lter.
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FiltersA �lter takes some input x(n), and produ
es an output
y(n), whi
h has been �ltered to extra
t 
ertain features(e.g. trend, seasonality, ...)

x(n) Filter y(m)

Referen
es:Bro
kwell and Davis, 1996Box and Jenkins, 1976Anderson and Moore, 1979
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Possible �lter properties

invertibility: The mapping x(t) → y(t) must be 1:1, sothat ea
h input signal has a unique output signal(don't need to invert all possible outputs).memory: y(t0) depends on x(t) for t 6= t0.
ausality: y(t0) only depends on x(t) for t ≤ t0.stability: Bounded Input Bounded Output (BIBO).If |x(t)| ≤ M for all t and some M, then |y(t)| ≤ R forall t and some R.time invarian
e: time shift doesn't matter, i.e.

x(t) → y(t) implies x(t − t0) → y(t − t0).linearity: prin
iple of superposition: xi → yi, i = 1,2implies that for all a1,a2 ∈ R, a1x1 +a2x2 → a1y1 +a2y2.

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.4/71



Linear FiltersResponse is linear in the input, e.g. given the �lter,
L{x1} → y1

L{x2} → y2Then

L{ax1 +bx2}→ ay1 +by2The output of linear �lters 
an be written as a linear
ombination of the inputs.
y(m) =

∞

∑
i=−∞

w(m, i)x(m− i)
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Linear Time Invariant Filterstime invariant �lters don't 
hange over time, so
w(m, i) = w(i)The output of linear �lters 
an be written as a linear
ombination of the inputs.

y(m) =
∞

∑
i=−∞

w(i)x(m− i)

Note that this is a dis
rete 
onvolution!
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ConvolutionDe�nition: Dis
rete 
onvolution

[x1∗ x2] (n) =
∞

∑
i=−∞

x1(i)x2(n− i) =
∞

∑
i=−∞

x1(n− i)x2(i)

Now remember the impa
t of 
onvolutions in DFTs, e.g.

F {x1∗ x2} = X1(k)X2(k)where F {x1(n)} = X1(k) and F {x2(n)} = X2(k).
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Cir
ular 
onvolutionConvolution of �nite, dis
rete-time sequen
esstandard 
onvolution assumes in�nite series of data

(x∗ y)[n] =
∞

∑
i=−∞

x(i)y(n− i)

note what happens at the edges of a standard
onvolution, when the series are �niteeither zero pad (pretend series are in�nite, butvalues are zero)trun
ate 
onvolution (only 
ompute where edgeeffe
ts are nil)take 
ir
ular 
onvolution
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[0℄
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[1℄
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[2℄
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[3℄
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[4℄
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[5℄
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[6℄
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Cir
ular 
onvolution

Cir
ular 
onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[7℄
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Example
Take y(n) = [x∗ x](n) = (1,1,0,0)∗ (1,1,0,0) = (1,2,1,0)

(x∗ x)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)

y(0) = x(0)x(0)+ x(1)x(3)+ x(2)x(2)+ x(3)x(1)

= 1+0+0+0 = 1
y(1) = x(0)x(1)+ x(1)x(0)+ x(2)x(3)+ x(3)x(2)

= 1+1+0+0 = 2
y(2) = x(0)x(2)+ x(1)x(1)+ x(2)x(0)+ x(3)x(3)

= 0+1+0+0 = 1
y(3) = x(0)x(3)+ x(1)x(2)+ x(2)x(1)+ x(3)x(0)

= 0+0+0+0 = 0
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Example DFT of 
ir
ular 
onvolution

Convolution theorem still holds

x(n) = (1,1,0,0)

X(k) = (2,1− i,0,1+ i)

y(n) = [x∗ x](n) = (1,2,1,0)

Y (k) = X(k)X(k) = (4,−2i,0,2i)

Dire
t 
al
ulation of Y (k) = ∑N−1
n=0 y(n)e−i2πkn/N

Y (0) = e−i2π0/4 +2e−i2π0/4+ e−i2π0/4 = 1+2+1 = 4
Y (1) = e−i2π0/4 +2e−i2π1/4+ e−i2π2/4 = 1−2i−1 = −2i
Y (2) = e−i2π0/4 +2e−i2π2/4+ e−i2π4/4 = 1−2+1 = 0
Y (3) = e−i2π0/4 +2e−i2π3/4+ e−i2π6/4 = 1+2i−1 = 2i
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Linear Time Invariant Causal Filterstime invariant �lters don't 
hange over time, so
w(m, i) = w(i)
ausal �lters only depend on the past, so w(−i) = 0,for i > 0.The output of linear �lters 
an be written as a linear
ombination of the inputs.

y(m) =
∞

∑
i=0

w(i)x(m− i)

Note that this is also a dis
rete 
onvolution!
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Impulse response

Given a �lter:

x(n) Filter y(m)

The impulse response is the output of the �lter given animpulse as the input.
Filter
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Impulse response

For a linear, time-invariant �lter F, the impulse responseis

IF(m) =
∞

∑
i=−∞

w(i)δmi = w(m)

where δnk is the Krone
ker delta, de�ned by
δnk =

{

1 if n = k
0 otherwise

So a linear time-invariant �lter 
an be 
ompletely
hara
terized by its impulse response.
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Impulse response

Note that any signal x(n) 
an be written as a linear
ombination of impulses, e.g.

x(n) =
∞

∑
k=−∞

δnkx(k)

Given linearity of the �lter, the output 
an be written asthe same linear 
ombination of the impulse responses,e.g.

y(m) =
∞

∑
i=−∞

w(i)

[

∞

∑
k=−∞

δm−i,kx(k)

]

=
∞

∑
i=−∞

w(i)x(m− i)
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Memory
Filters 
an have �nite, or in�nite memoryFIR: Finite Impulse Response �lters have animpulse response whi
h have a �nite number ofterms, i.e. ∃N su
h that

w(n) = 0, ∀|n| > NIIR: In�nite Impulse Response �lters have animpulse response with an in�nite number of terms.though for BIBO we require a �nite sum, e.g.

∞

∑
i=−∞

|w(i)| < ∞

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.16/71



FIR example: Moving Average

(�nite) Moving Average (MA)

y(n) =
N

∑
i=−N

b(i)x(n− i)

typi
al example, symmetri
 re
tangular windowed MA

y(n) =
1

2N +1

N

∑
i=−N

x(n− i)

NB: this is a non-
ausal �lter

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.17/71



FIR example: differen
e

A differen
e operator (or �lter) looks like
y(n) = x(n)− x(n−1)Note this is a spe
ial 
ase of the MA aboveb(0) = 1, b(1) = -1but this terminology is used differently in different�eldssignal pro
essing and stats: MA as de�ned above�nan
ial time series: MA ⇒ low pass

NB: this is a 
ausal �lter
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Example of IIR �lter: EWMA

Exponentially Weighted Moving Average (EWMA)
y(n) = ay(n−1)+(1−a)x(n)alternative IIR representation

y(n) = (1−a)
∞

∑
i=0

aix(n− i)

gives exponentially de
reasing weight to histori
al dataMore general 
ase Autoregressive (AR) �lters

y(n) =
p

∑
i=1

a(i)y(n− i)+b(0)x(n)
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Transfer fun
tionwe 
an represent LTI �lter as 
onvolutionin Fourier domain, 
onvolution be
omes a simpleprodu
tLTI �lter is 
ompletely 
hara
terized by FT of itsimpulse responsewe 
all the FT of the impulse response the Transferfun
tion, e.g.

W (k) = DFT (w(n))The transfer fun
tion tells us the impa
t of the�lter on different 
omponents of the spe
trum of asignal
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Types of �lters

low pass: pass low frequen
ies, stop highfrequen
ies.these �lters a
t as smoothers of the data.e.g. EWMA, MAhigh pass: pass high frequen
ies, stop lowfrequen
ies.e.g. differen
er � highlights edgesband pass: pass a band of frequen
iesnot
h: ex
lude a band (sometimes 
alled bandstop)e.g. remove signal at a parti
ular frequen
y toprevent feedba
k (�ringing out�)
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Example: MA y(n) = 1
2N+1 ∑N

i=−N x(n− i)

fs = 1000, N = 10,000, input white noise, N = 5
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Example: MA y(n) = 1
2N+1 ∑N

i=−N x(n− i)

fs = 1000, N = 10,000, input 10 sines evenly spa
ed freq.
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Example: differen
e y(n) = x(n)− x(n−1)

fs = 1000, N = 10,000, input white noise
0 50 100

−5

0

5
signal segment

0 100 200 300 400 500
10

−5

10
0

power spectrum

0 50 100
−5

0

5

0 100 200 300 400 500
10

−10

10
−5

10
0

high pass
Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.24/71



Example: differen
e y(n) = x(n)− x(n−1)

fs = 1000, N = 10,000, input 10 sines evenly spa
ed freq.
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Example: EWMA y(n) = ay(n−1)+(1−a)x(n)

fs = 1000, N = 10,000, input white noise, a = 0.9
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Example: EWMA y(n) = ay(n−1)+(1−a)x(n)

fs = 1000, N = 10,000, input 10 sines evenly spa
ed freq.
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What do they sound like?

white noise (stati
)MA (low-pass, length 11)MA (low-pass, length 11)differen
e (high-pass)
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Why does He make your voi
e funny?

inhaling Helium (He) makes your voi
e sound funnyOrdinary spee
hHelium spee
h
onventional explanation: He is mu
h lighter thanair, and the speed of sound is around 3 times asfast, hen
e vibrations are faster, and so the pit
hof your voi
e is higher.But this is wrong!vibrations in our voi
e are generated by vo
al
ords, whi
h whose vibrational frequen
y isindependent of gas.
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Why does He make your voi
e funny?

a
tually voi
e is generated by two pro
essesvo
al 
hords generate vibrationsvo
al tra
t (mouth, tongue, et
.) �lters thesounds

He in vo
al tra
t 
hanges the transfer fun
tion sothat the �lter be
omes �higher� pass than before.pit
h is not 
hangedonly timbre (harmoni
s) are 
hangedExamplePit
h in AirPit
h in He
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Why does He make your voi
e funny?
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Why does He make your voi
e funny?
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Finan
ial data example
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Finan
ial data example
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Better �ltersThese don't look like very good �lters?they don't have a very distin
t pass bandthe transition region between pass band and stopbands is largethe stop-band attenuation is poorIt would be ni
e to have �lters with better properties,so we 
an more pre
isely spe
ify �lter out parti
ularbands.
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Terminology
f /2sstopbandpassband transition

region

st
o

p
b

an
d
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te

n
u
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n

dB

passband ripple

phenomena
Gibb’s
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Example �lter 
omparison

Stop-band attenuation ≃ -13 dB
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Filtering in the frequen
y domain

We 
ould �lter thus:

fft

filter

ifft,but this requires O(N logN) operations, whi
h growsnon-linearly in N. For many appli
ations, we 
an't affordto have �ltering operations grow faster than O(N), e.g.real-time appli
ations,The number of data points will be fsTthe time available for 
omputation is Ttime available per data point is 1/ts, whi
h is
onstant with respe
t to N.
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Perfe
t �lters and Gibb's phenomena

Filtering in frequen
y domain might not give you whatyou want. For example, re
tangular low-pass �lter tosmooth the data.

signal

0 20 40 60 80 100
frequency

power spectrum

Creates Gibb's phenomena in time (worse in images).
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Filtering in the time domain

We see that there are two possible representations forlinear, time-invariant �ltersfrequen
y domaintime domainWe 
an 
onvert between them, but what we want is a�lter that has good properties in both domains.good stop-band attenuation, and short transitionregion, with not too mu
h rippleshort number of taps, and not too mu
h ripple.
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Z-transformsThis is a 
onvenient point to introdu
e a new (though
losely related) transform 
alled the Z-transform,whi
h is ideal for analyzing LTI �lters.
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Z-transformsThe Z-transform is de�ned by

W (z) =
∞

∑
n=−∞

w(n)z−n

Similar to Probability Generating Fun
tions (PGF)

P(z) =
∞

∑
n=−∞

pnzn

The Z-transform extends the Fourier transform ontothe 
omplex planenote that W (ei2πk) = F(k), where F(k) is the FT of w
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Z-transformsA Fourier transform

signal
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Z-transformsA Fourier transform viewed as spe
ial points of theZ-transform
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Z-transform and 
onvolutionsGiven a dis
rete 
onvolution

w(n) = [x∗ y] (n) =
∞

∑
i=−∞

x(i)y(n− i) =
∞

∑
i=−∞

x(n− i)y(i)

then the Z-transform of w is
W (z) = X(z)Y (z)where X(z) and Y (z) are the Z-transforms of x and y.

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.44/71



Inverse Z-transformCan see by analogy to the DFT that we 
ould invert byintegrating the Z-transform around the unit 
ir
le inthe 
omplex plane.In fa
t we 
an use any 
ounter-
lo
kwise 
ontourintegral whi
h goes around all of the poles of the
Z-transform.

w(n) =
1

2πi

I

Γ
W (z)zn−1dzwhere Γ is su
h a 
ontour in the 
omplex plane.
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More general IIR �lters

ARMA (Auto-regressive Moving Average)
y(n) = −

p

∑
i=1

a(i)y(n− i)+
q

∑
i=0

b(i)x(n− i)

Alternatively write this as two 
onvolutions
p

∑
i=0

a(i)y(n− i) =
q

∑
i=0

b(i)x(n− i)

Take Z-transform
A(z)Y (z) = B(z)X(z)
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ARMA �lters

Y (z) =
B(z)
A(z)

X(z)

A(z) and B(z) are polynomials of degree p and q in zgiven a parti
ular desired transfer fun
tion (writtenin Z-transform terms as W (z)), �lter design problemis to approximate this using a rational polynomial

A(z)/B(z) of as low order as possible.
A(z) has p zeros in 
omplex plane, 
alled poles

B(z) has q zeros in 
omplex plane, 
alled zerosfor 
ausal, linear, time-invariant �lter to be stable(BIBO), the poles have to be inside the unit 
ir
le.
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Example: EWMA

y(n) = ay(n−1)+(1−a)x(n)So

A(z) = 1−az−1

B(z) = 1−a

Y (z) =
1−a

1−az−1
=

(1−a)z
z−asingle zero at 0single pole is at z = aFor the �lter to be stable |a| < 1.
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Example: EWMA

Y (z) =
1−a

1−az−1
, a = 0.9
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Example: EWMA impulse response

The EWMA

y(n) = ay(n−1)+(1−a)x(n)has Z-transform (where stable, i.e |a| < 1)
Y (z) =

1−a
1−az−1

= (1−a)
∞

∑
n=0

anz−n

whi
h we 
an invert by inspe
tion to see that

y(n) = (1−a)
∞

∑
i=0

anx(n)

Hen
e the Exponential (or geometri
) de
rease in theimpulse response of EWMA �lter.
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Filter invertibility

The transfer fun
tion of the inverse of a �lter (withtransfer fun
tion H(z)) should be
H−1(z) = 1/H(z)be
ause the produ
t of these two transfer fun
tionsshould 
an
el.for a �lter to be stable, the poles of H(z) must lieinside the unit 
ir
le in the 
omplex plane.when we invert, poles be
ome zeros, and visa versafor the inverse to be stable, the zeros of H(z) mustlie inside the unit 
ir
le in the 
omplex plane.
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Some simple �lters

All zero �lter = MAAll pole �lter = ARLapla
e, Sobel, Prewitt (2D, next le
ture)I have only really looked at magnitude, but phase isalso important for �lters.Note that we only 
onsider dis
rete �lters here, thereis an interesting set of problems in designing analogue�lters.
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Appli
ations

Appli
ations of �lters in
lude noise redu
tion
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Appli
ation: Dolby noise redu
tion

Goal: redu
e the tape hiss on a 
assette tape.Note, this is an analogue problem, not digital!hiss results from imperfe
tions in the analoguemagneti
 media on the tapeDolby A solutionnote that tape hiss is a bigger problem at highfrequen
ies, where there is less musi
al 
ontentto mask the hisstwo stage: used at both en
oding and de
odingamplify higher frequen
y musi
 
ontent onre
ordingreverse effe
t on playba
k
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Appli
ation: Dolby noise redu
tionFrom http://www.dolby.com/
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An appli
ations: denoising

Goal: remove noise from a signaltypes of noisewhite Gaussian noise, salt & pepper noise(be
ause of appearan
e in images), orun
orrelated noise
orrelated Gaussian noiseti
ks and pops: small but high power bursts ofnoisesingle endeddon't get to en
ode data on re
ording as withDolbyjust get a signal in
luding the noise

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.56/71



An appli
ations: denoising

Goal: remove noise from a signalApproa
h: use a low-pass �lterworks be
ause often high-frequen
y 
ontent isn't asimportant, but white noise is spread over the wholefrequen
y spe
trum.works well for un
orrelated noisenot as good for 
orrelated noise (spe
trum isnot uniform)not mu
h use for ti
ks and popsif high-frequen
y 
ontent is important, introdu
esartifa
tse.g. blurred edges in images
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Example
Sinusoid + noise, �ltered using re
tangular MA N = 5

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.58/71



Example 2
Musi
Musi
 plus white noiseMusi
 plus white noise, �ltered using re
tangularMA N = 11
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An appli
ations: dete
t level 
hanges

Goal, dete
t level 
hanges in the signalApproa
h: use a high-pass �lteredge dete
tion in imagesoften use something as simple as a differen
erthreshold on the �lter output to dete
t 
hanges

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.60/71



Example
Sinusoid + noise, with an edge, �ltered using differen
er
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Linear systems

This is not a systems 
ourse, but the analogy between�lters and systems is so 
lose it would be a shame tomiss the opportunity to 
ompare the two.
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Systems
A system is represented by a transformation of an inputsignal x(t) into an output signal y(t).

systemx(t) y(t)

This might represent, e.g.a pendulum, or a vibrating string, where x(t) is afor
ing term, and y(t) is the pendulum's positionand ele
troni
 
ir
uit where x(t) is the input voltageand y(t) is the output.A sensor where the input is the quantity to besensed (e.g. temperature) and the output is what wesee, e.g. the resistan
e of a thermistor.
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System properties

invertibility: The mapping x(t) → y(t) must be 1:1, sothat ea
h input signal has a unique output signal(don't need to invert all possible outputs).memory: y(t0) depends on x(t) for t 6= t0.
ausality: y(t0) only depends on x(t) for t ≤ t0.stability: Bounded Input Bounded Output (BIBO).If |x(t)| ≤ M for all t and some M, then |y(t)| ≤ R forall t and some R.time invarian
e: time shift doesn't matter, i.e.

x(t) → y(t) implies x(t − t0) → y(t − t0).linearity: prin
iple of superposition: xi → yi, i = 1,2implies that for all a1,a2 ∈ R, a1x1 +a2x2 → a1y1 +a2y2.
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Linear systems

Systems are just �lters! The differen
e iswe design �lters for 
ertain goals (e.g. low pass)systems o

ur in natureProblems are differentoptimal design of �ltersestimation or 
ontrol of system
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Linear time-invariant systems

Simple, tra
tableAs with �lters 
hara
terized by impulse response,or frequen
y response (transfer fun
tion)Frequen
y response is Fourier transform of impulseresponse.we don't (ne
essarily) design system, so we 
an'tensure linearity; its OK sometimes, but ...

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.66/71



Non-linear systems

An example

y(t) = x(t)2Given input signal x(t) = sin(2π f0t)+sin(2π f1t)The output will be

y(t) = sin2(2π f0t)+sin2(2π f1t)+2sin(2π f0t)sin(2π f1t)

= sin2(2π f0t)+sin2(2π f1t)+

cos(2π( f0− f1)t)−cos(2π( f0 + f1)t)We get frequen
ies that didn't exist in original signal!linear systems 
an be 
hara
terized by transferfun
tion, so they 
an only 
hange the amount of aparti
ular frequen
y 
omponent (and its phase), notintrodu
e new frequen
ies
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Resonan
eThink of resonant system asnarrow band pass �lterinput signal is enhan
ed at 
ertain frequen
ies, andattenuated at all othersexamplesfor
ed pendulumplu
ked stringmay be unstable, e.g. Ta
oma narrows
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Ta
oma narrows bridge
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Ta
oma narrows bridge
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Ta
oma narrows bridge
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