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Filters

Filtering is a basic signal processing operation. We want
to “filter out" some part of the signal so that we can see
other more clearly. For instance, we want to filter out
the "noise”. Common techniques for filtering either use
transforms directly, or in their analysis and design and
this is one of the most important applications of

transform methods, but also, we will later see how we
can implement some transforms using filter.
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Filters

A filter takes some input x(n), and produces an output
y(n), which has been filtered to extract certain features
(e.g. trend, seasonadlity, ...)

References:
m Brockwell and Davis, 1996

m Box and Jenkins, 1976
m Anderson and Moore, 1979
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Possible filter properties

m invertibility: The mapping x(t) — y(t) must be 1:1, so
that each input signal has a unique output signal
(don't need to invert all possible outputs).

m memory: Y(tp) depends on Xx(t) for t # to.
m causality: y(tp) only depends on x(t) for t <t.

m stability: Bounded Input Bounded Output (BIBO).
If |x(t)| <M for allt and some M, then |y(t)| <R for
all t and some R.

®m time invariance: time shift doesn't matter, i.e.
X(t) — y(t) implies x(t —tg) — y(t —to).

m linearity: principle of superposition: x; —vy;,i=12
implies that for all a;,a; € R, a;xg + axxo — agy1 + axye.
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Linear Filters

Response is linear in the input, e.g. given the filter,

Then
L{ax; +bxa} — ay1 + by,

The output of linear filters can be written as a linear
combination of the inputs.
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Linear Time Invariant Filters

m time invariant filters don't change over time, so
w(m,i) = w(i)

The output of linear filters can be written as a linear
combination of the inputs.

Note that this is a discrete convolution!
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Convolution

Definition: Discrete convolution

X1 % Xo] ( le Xo(N—1) le — )Xol

|=—o00 | =—00

Now remember the impact of convolutions in DFTs, e.g.
.{]:{Xl * X2} — Xl(k)XZ(k)
where F{x1(n)} = X1(k) and F{x(n)} = Xz(k).
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Circular convolution

Convolution of finite, discrete-time sequences

m standard convolution assumes infinite series of data

x=y)lnl = 3 xiyn—)

i 00

m note what happens at the edges of a standard
convolution, when the series are finite

m either zero pad (pretend series are infinite, but
values are zero)

m truncate convolution (only compute where edge
effects are nil)

m take circular convolution
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[O]

x[4]
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[1]

x[4]
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[2]

x[4]
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[3]

x[4]
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[4]

x[4]
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[5]

x[6]1 yl7] yl3l 1x[2]

x[5] x[3]

x[4]
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[6]

x[4]
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Circular convolution

N—1
Circular convolution (xxy)[n]= S X(i)y(n—i mod N)

(x*y)[7]

x[4]
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Example

Take y(n) = [x* X (n) = (1,1,0,0) % (1,1,0,0) = (1,2,1,0)

N—-1

(X*X)[n] = Zx(i)y(n—i mod N)

y(0) = Xx(0)x(0)+x(1)x(3) +%x(2)x(2) +x(3)x(1)

= 14+0+0+0 =1
y(1) = Xx(0)x(1)+x(1)x(0) +x(2)X(3) +x(3)x(2)

= 1+1+0+0 = 2
y(2) = X(0)X(2) +X(1)x(1) + x(2)x(0) + X(3)x(3)

— 0+1+0+0 = 1
y(3) = X(0)X(3)+x(1)x(2) +x(2)x(1) +x(3)x(0)

— 0+0+0+0 = 0
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Example DFT of circular convolution

Convolution theorem still holds

x(n) = (1,1,0,0)

X(ky = (2,2—1,0,1+1)

y(n) = [xxx|(n) = (1,2,1,0)
Y(k) = X(k)X(k) = (4,-2i,0,2i)

Direct calculation of Y (k) = 3 "'y(n)e 2*VN

Y(0) = g-i2M0/4 | 9a-i2M0/4 | o-i210/4 _ 1,211 — 4

Y(1) = e@Wiypoet/iApeam@/d — 1-2i—-1 = -2i
Y(Z) _ e—i2T[O/4_|_Ze—i2n2/4_|_e—i2n4/4 — 1-241 =0
Y(3) = e 10/ 2e7 /4 g2/ = 14211 = 2i
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Linear Time Invariant Causal Filters

m time invariant filters don't change over time, so
w(m,i) = w(i)

m causal filters only depend on the past, so w(—i) =0,
fori> 0.

The output of linear filters can be written as a linear
combination of the inputs.

y(m) = 3 wijx(m-—i)

Note that this is also a discrete convolution!
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Impulse response

Given a filter:

The impulse response is the output of the filter given an
impulse as the input.

[

S—
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Impulse response

For a linear, tfime-invariant filter F, the impulse response
5

where & is the Kronecker delta, defined by

1 ifn=Kk
6nk—{

0 otherwise

So a linear time-invariant filter can be completely
characterized by its impulse response.
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Impulse response

Note that any signal x(n) can be written as a linear
combination of impulses, e.g.

Z 5nkX

k=—0o0

Given linearity of the filter, the output can be written as
the same linear combination of the impulse responses,

e.qg.
y(m)

Z 5m |kX

|=—00 k_—oo

Z w(i)x(m—i)

i:—OO

||
M
s
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Memory

Filters can have finite, or infinite memory

m FIR: Finite Impulse Response filters have an
impulse response which have a finite number of
terms, i.e. AN such that

w(n) =0, V|n| >N

m ITR: Infinite Impulse Response filters have an
impulse response with an infinite number of terms.

though for BIBO we require a finite sum, e.g.
S W)l < oo
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FIR example: Moving Average

(finite) Moving Average (MA)

N

y(n) = S b(i)x(n—i)

i=—N

typical example, symmetric rectangular windowed MA

NB: this is a non-causal filter
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FIR example: difference

A difference operator (or filter) looks like

y(n) =x(n) =x(n—1)

Note this is a special case of the MA above

b(0)=1, b(1) = -1
but this terminology is used differently in different
fields

m signal processing and stats: MA as defined above

m financial time series: MA = low pass

NB: this is a causal filter
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Example of TIR filter: EWMA

Exponentially Weighted Moving Average (EWMA)

y(n) =ay(n—1)+ (1—-a)x(n)
alternative TIR representation

(00)

y(n) = (1—a) ;aix(n —1i)

gives decreasing weight to historical data

More general case Autoregressive (AR) filters
p

y(n) = Za(i)Y(n — 1) +b(0)x(n)

Transform Methods & Signal Processing (APP MTH 4043): lexfib — p.19/71



Transfer function

m we can represent LTI filter as convolution

m in Fourier domain, convolution becomes a simple
product

m LTT filter is completely characterized by FT of its
impulse response

m we call the FT of the impulse response the Transfer
function, e.g.
W(k) = DFT(w(n))

m The transfer function tells us the impact of the
filter on different components of the spectrum of a
signal
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Types of filters

m low pass: pass low frequencies, stop high
frequencies.

these filters act as smoothers of the data.
e.g. EWMA, MA

m high pass: pass high frequencies, stop low
frequencies.

e.g. differencer - highlights edges
m band pass: pass a band of frequencies

m notch: exclude a band (sometimes called bandstop)

e.g. remove signal at a particular frequency to
prevent feedback ("ringing out")
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Example: MA yin) = ;15N (x(n—i)

fs=1000 N = 10,000, input white noise, N=5

signal segment power spectrum
10 (0o mese abanl ma s daglal dtae lo o4 0

LAl )

10
0 50 100 0 100 200 300 400 500
1 10°
0 10
-1 10
0 50 100 0 100 200 300 400 500

low pass
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Example: MA yin) = ;15N (x(n—i)

fs=1000 N = 10,000, input 10 sines evenly spaced freq.

signal segment power spectrum

M I

100 200 300 400 500

2 10°
1
-6
0 10
0 50 100 0 100 200 300 400 500
low pass
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Example: difference yn) =xmn) -xn-1)

fs= 1000 N = 10,000, input white noise

signal segment . power spectrum
10 (0o mese abanl ma s daglal dtae lo o4 0

0 50 100

0 50 100 0 100 200 300 400 500
high pass
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Example: difference yn) =xmn) -xn-1)

fs=1000 N = 10,000, input 10 sines evenly spaced freq.

signal segment power spectrum

RARxa I

100 200 300 400 500

10
OM -
-10;
100 200 300 400 500
high pass
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Example EWMAy y(n—1)+ (1—a)x(n)

fs=1000 N = 10,000, input white noise, a= 0.9

signal segment power spectrum
10 (e Bacse albanl iane Llasl pl dise, Lo 0d 1

Ll

10
0 50 100 0 100 200 300 400 500
0.5 ‘ 10°
0 107
~0.5 10
0 50 100 0 100 200 300 400 500
low pass

Transform Methods & Signal Processing (APP MTH 4043): lexfib — p.26/71



Example EWMAy y(n—1)+ (1—a)x(n)

fs=1000 N = 10,000, input 10 sines evenly spaced freq.

signal segment power spectrum

H Mﬂ

100 200 300 400 500

oo i

100 200 300 400 500

Iow pass
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What do they sound like?

= white noise (static) ¥

m MA (low-pass, length 11) <)
m MA (low-pass, length 11) <)
m difference (high-pass)
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Why does He make your voice funny?

m inhaling Helium (He) makes your voice sound funny
m Ordinary speech <)

= Helium speech ¥

m conventional explanation: He is much lighter than
air, and the speed of sound is around 3 times as
fast, hence vibrations are faster, and so the pitch
of your voice is higher.

m But this is wrong!

m vibrations in our voice are generated by vocal
cords, which whose vibrational frequency is
independent of gas.
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Why does He make your voice funny?

m actually voice is generated by two processes
m vocal chords generate vibrations

m vocal tract (mouth, tfongue, etc.) filters the
sounds

m He in vocal tract changes the transfer function so
that the filter becomes “higher” pass than before.

m pitch is not changed
m only timbre (harmonics) are changed

m Example

= Pitch in Air 9
m Pitch in He <
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Why does He make your voice funny?

: voice in air
10 T T
10° 1
10‘5 | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5
. voice in He
10 T T
10°
10‘5 | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5

frequency (kHz)
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Why does He make your voice funny?

. voice in air
10 T
10° F
10‘5 | | | | | | | | |
0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
o D Eb E F F# G G# A giceinge ¢ C# D Eb E
I I I I I I I
L —~—"
100 | | | | | | | |

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
frequency (kHz)
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Financial data example

az of 19-Aug-200d

3600

B _A0RD
Eio-day MA
B 10-day EM#

3550

3500

3450

3400

3340

1
Junig

1 1 1 L 1
JunzZi Jullé AUgnD

Copuright 2004 Yahoo! Inc.

http:/fau . Finance .yahoo .com
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Financial data example

az of 19-Aug-200d
; :

4000

B _A0RO
B 10-day EM#
Calus i 200-day MA
W Z00-day EMA

e -

2500

2000

1500

1000

00

1 1 L L 1 1 L 1 L 1 1 L L 1 1 1
1955 1996 1995 2000
Copuright 2004 Yahoo! Inc. http:/fau . Finance .yahoo .com
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Better filters

These don't look like very good filters?

m they don't have a very distinct pass band

m the transition region between pass band and stop
bands is large

m the stop-band attenuation is poor

It would be nice to have filters with better properties,
so we can more precisely specify filter out particular
bands.
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Terminology

pnenomena

BA  Gibb's
Y

stopband
attenuation

> SE———

=
passband transition stopband fy/2
region
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Example filter comparison

Stop-band attenuation ~ -13 dB

0

10

10 —_— MA

— difference
EWMA

0 100 200 300 400 500
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Filtering in the frequency domain

We could filter thus:
mfft
mfilter
mifft,

but this requires O(NlogN) operations, which grows
non-linearly in N. For many applications, we can't afford
to have filtering operations grow faster than O(N), e.qg.
real-time applications,

m The number of data points will be fsT
m the time available for computationis T

m time available per data point is 1/ts, which is
constant with respect to N.
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Perfect filters and Gibb's phenomena

Filtering in frequency domain might not give you what
you want. For example, rectangular low-pass filter to
smooth the data.

signal

A W

power spectrum

0 20 40 60 80 100
frequency

Creates Gibb's phenomena in time (worse in images).
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Filtering in the time domain

We see that there are two possible representations for
linear, time-invariant filters

m frequency domain

® time domain

We can convert between them, but what we want is a
filter that has good properties in both domains.

m good stop-band attenuation, and short transition
region, with not Yoo much ripple

m short number of taps, and not too much ripple.
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Z-transforms

This is a convenient point to intfroduce a new (though
closely related) transform called the Z-transform,
which is ideal for analyzing LTT filters.
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Z-transforms
The Z-transform is defined by

W(z) = i w(n)z ™"

N=—00

Similar to Probability Generating Functions (PGF)

P(z) = i PnZ'

N=—00

The Z-transform extends the Fourier transform onto
the complex plane

m note that W(€?™) = F(k), where F(K) is the FT of w
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Z-transforms

A Fourier transform

11

signal

I T |

? ?
°11°

? o1lte o
°LJLe  8llé

power spectrum

I

0 5 10 15 20 25 30
frequency
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Z-transforms

A Fourier transform viewed as special points of the
Z-transform

150
100

50

Imaainarv
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Z-transform and convolutions

Given a discrete convolution

win) = eyl () = 3 X(yin—i)= 3 X(n—i)y(i)

where X(z) and Y(z) are the Z-transforms of x andy.

Transform Methods & Signal Processing (APP MTH 4043): lexib — p.44/71



Inverse Z-transform

Can see by analogy to the DFT that we could invert by
integrating the Z-transform around the unit circle in
the complex plane.

In fact we can use any counter-clockwise contour
integral which goes around all of the poles of the
Z-transform.

w(n) = Zini jéW(z)z”‘ldz

where I' is such a contour in the complex plane.
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More general IIR filters

ARMA (Auto-regressive Moving Average)

P g

y(m) =~ 3 ali)y(n—i)+ 3 bli)x(n-i

i
Alternatively write this as two convolutions

P g

;a(i)Y(n —1) = %b(i)x(n —1)

Take Z-transform
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ARMA filters

m A(z) and B(z) are polynomials of degree pand qin z

m given a particular desired transfer function (written
in Z-transform terms as W(2)), filter design problem
is to approximate this using a rational polynomial
A(z)/B(z) of as low order as possible.

m A(z) has p zeros in complex plane, called poles
m B(z) has q zeros in complex plane, called zeros

m for causal, linear, time-invariant filter to be stable
(BIBO), the poles have to be inside the unit circle.
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Example: EWMA

y(n) =ay(n—1)+ (1-a)x(n)

So
Az = 1-az?
B(zz = 1—a
Y(2) — 1—a :(1—a)z

1—azl Z—a

m single zero at O
m single pole isat z=a
For the filter to be stable |a| < 1.
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Example: EWMA

l1—a
Y@ = 15 a=09

2N e
CORRLSL. P SRR SRS et S
>

O .....

> 2y
e

-4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1IN g
imaginary 15 -1 05 O 05 1 1.5

real
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Example: EWMA impulse response

The EWMA
y(n) =ay(n—1)+ (1—a)x(n)

has Z-transform (where stable, i.e |a| < 1)

l1—-a i
Y(z) = e l= (1—a) %a”z‘”
N=

which we can invert by inspection to see that

(0]

y(n)=(1-3a ;a”x(n)

Hence the Exponential (or geometric) decrease in the
impulse response of EWMA filter.
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Filter invertibility

The transfer function of the inverse of a filter (with
transfer function H(z)) should be

H (2 =1/H(2)

because the product of these two transfer functions
should cancel.

m for a filter to be stable, the poles of H(z) must lie
inside the unit circle in the complex plane.

m when we invert, poles become zeros, and visa versa

m for the inverse to be stable, the zeros of H(z) must
lie inside the unit circle in the complex plane.
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Some simple filters

m All zero filter = MA
m All pole filter = AR

m Laplace, Sobel, Prewitt (2D, next lecture)

m I have only really looked at magnitude, but phase is
also important for filters.

Note that we only consider discrete filters here, there
is an interesting set of problems in designing analogue
filters.
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Applications

Applications of filters include noise reduction
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Application: Dolby noise reduction

Goal: reduce the tape hiss on a cassette tape.
m Note, this is an analogue problem, not digitall
m hiss results from imperfections in the analogue
magnetic media on the tape
m Dolby A solution

m note that tape hiss is a bigger problem at high
frequencies, where there is less musical content
to mask the hiss

m two stage: used at both encoding and decoding

m amplify higher frequency music content on
recording

m reverse effect on playback
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Appllca’rlon Dolby noise reduction

Further path

Filters Compressors From htt p: / / ww. dol by. com

..j,E .. - /"—/

IEH}HISHHI A

Input » + /> Output
Main path i

Dolby A-type compressor

g -0 s
| || L1
& et aaormmn
|aeT" 1
411 N
—
E ..--"""'-—F_F ] i
a0 1 ml -
=
-
.-_'____...- -i"'-'
-..-_'___..--
]
=40
20 =0 10 200 =00 1k o [ 10K 20
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An applications: denoising

Goal: remove noise from a signal
m types of noise
m white Gaussian noise, salt & pepper noise

(because of appearance in images), or
uncorrelated noise

m correlated Gaussian noise

m ticks and pops: small but high power bursts of
noise

m single ended

m don't get to encode data on recording as with
Dolby

m just get a signal including the noise
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An applications: denoising

Goal: remove noise from a signal
m Approach: use a low-pass filter

m works because often high-frequency content isn't as
important, but white noise is spread over the whole
frequency spectrum.

m works well for uncorrelated noise

m not as good for correlated noise (spectrum is
not uniform)

® not much use for ticks and pops

m if high-frequency content is important, intfroduces
artifacts

m e.g. blurred edges in images
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Example

Sinusoid + noise, filtered using rectangular MA N =5
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Example 2

m Music <t

m Music plus white noise )
m Music plus white noise, filtered using rectangular
MAN=11 ¢
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An applications: detect level changes

Goal, detect level changes in the signal

m Approach: use a high-pass filter

m edge detection in images

m oftfen use something as simple as a differencer
m threshold on the filter output to detect changes
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Example

Sinusoid + noise, with an edge, filtered using differencer

AR ]l
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Linear systems

This is not a systems course, but the analogy between
filters and systems is so close it would be a shame to
miss the opportunity to compare the two.

Transform Methods & Signal Processing (APP MTH 4043): lexfib — p.62/71



Systems

A system is represented by a transformation of an input
signal x(t) into an output signal y(t).

X(f) —| system ——=Y(1)

This might represent, e.qg.

m a pendulum, or a vibrating string, where x(t) is a
forcing term, and y(t) is the pendulum'’s position

m and electronic circuit where x(t) is the input voltage
and y(t) is the output.

m A sensor where the input is the quantity to be
sensed (e.g. femperature) and the output is what we
see, e.g. the resistance of a thermistor.
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System properties

m invertibility: The mapping x(t) — y(t) must be 1:1, so
that each input signal has a unique output signal
(don't need to invert all possible outputs).

m memory: Y(tp) depends on Xx(t) for t # to.
m causality: y(tp) only depends on x(t) for t <t.

m stability: Bounded Input Bounded Output (BIBO).
If |x(t)| <M for allt and some M, then |y(t)| <R for
all t and some R.

®m time invariance: time shift doesn't matter, i.e.
X(t) — y(t) implies x(t —tg) — y(t —to).

m linearity: principle of superposition: x; —vy;,i=12
implies that for all a;,a; € R, a;xg + axxo — agy1 + axye.
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Linear systems

Systems are just filters! The difference is

m we design filters for certain goals (e.g. low pass)
m systems occur in hature

Problems are different

m optimal design of filters
m estimation or control of system
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Linear time-invariant systems

m Simple, tractable

m As with filters characterized by impulse response,
or frequency response (tfransfer function)

m Frequency response is Fourier transform of impulse
response.

m we don't (necessarily) design system, so we can't
ensure linearity; its OK sometimes, but ...
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Non-linear systems

An example
P y(t) = X(t)?

Given input signal x(t) = sin(2rtfot) + sin(2mf;t)
The output will be

y(t) = sirf(2mfot) + sinf(2mft) + 2 sin(2mfot) sin(27fst)
= sir?(2mfot) + sinf(2mfyt) +
cog 2m( fo — f1)t) — cog2m( fo + f1)t)

We get frequencies that didn't exist in original signall

m |inear systems can be characterized by transfer
function, so they can only change the amount of a
particular frequency component (and its phase), not
introduce new frequencies
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Resonance

Think of resonant system as

m narrow band pass filter

m input signal is enhanced at certain frequencies, and
attenuated at all others

m examples

= forced pendulum
m plucked string

m may be unstable, e.g. Tacoma narrows
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Tacoma narrows bridge
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Tacoma narrows bridge
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Tacoma narrows bridge
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