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Formulation of control problems

We break a control problem into two parts
» Thesystem state: x(t) = (X (t),...,Xn(t))"
The system state describes the system (e.g. position aocityebf
the car in car parking example)
» Thecontrol: u(t) = (uy(t),...,un(t))"
We apply the control to the system (e.g. force applied to &g ¢
The evolution of the system is governed by the set of DEs

X(t) = g(t,x,u)

In a control problem we want to get the system to a particuétes(t;) at
timety, given initial statex(to).
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More Optimal Control
Examples

First we'll cover a bit more terminology, and then some exk®p
primarily focussed on planned growth strategies in econsmi
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Optimal control problems

In anoptimal control problem we have still have the system equations

X(t) = g(t,x,u) and we might wish to get to staxét;) given initial state
X(to), but now we wish to do so while minimizing a functional

t
F{x,u}:/ F(t,%, u) dt
to

That is, we wish to choose a functioiit) which minimizes the functional
F{x,u}, while satisfying the end-point conditiomsts) = X, and
X(t1) = x4, and the non-holonomic constrainté) = g(t, x, u).
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Optimal control problems

Optimization functional
ty
F{x,u}:/ f(t,x,u)dt
to

Note that
» f(t,x,u) has no dependence anthis is typically because costs
depend on the control, not how we change the control, buether
might be counter-examples

» f(t,x,u) has no dependence @nthis is common in control
problems, but not universal (we have seen at least one aqounte
example).
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System Terminology

» linear: the state equations are a set of linear DEs.
» autonomous: time doesn’t appear explicitly in the state equations
(e.g. ing(x,u), or f(x,u)).
> also called time-invariant
» terminal cost: the termq(t;,X(t1)) is called the terminal cost.
» controllable: a solution to the control problem exists.

» stable: a stable equilibrium solution to the system DEs exists.
> often we are interested in problems that are unstable, or we
wouldn’t really need a control
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Terminal costs

Sometimes in optimal control we don't fix the end-poifit; ), but rather
we assign a cosfi(t;,X(t1)) to particular end-points.

So now we wish to choose a contrgl) which minimizes the functional
1
Fixu} = ptxt) + [ ftxud
to

while satisfying the single end-point conditi@fty) = Xo, and the
non-holonomic constraink(t) = g(t,x, u).

> O(t1,x(t1)) is called theterminal cost.
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Control Terminology

» control (driver or automatic)

> planned (open loop)

> feedback (closed loop) control depends on current state
» type of control

> movement fromAto B

> continuous operations (maintain equilibrium)
» type of cost functionafF

> minimum time

> minimum fuel

> quadratic costs
» admissible controls

> unbounded/bounded/bang-bang
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Cost functional examples

» minimum time: choose the fastest possible control

1
F{x,u} = dt

to

» minimum fuel: fuel is expended by the controller, and we wish to
minimize this

F{xu}—fﬂu@)ym

» quadratic costs:

F{x,u} = /ttlxz(t)JrO(uz(t)dt
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Example: dynamic production

» A producer in purely competitive market
> A large numbers of independent producers
> Standardized product, e.g. potatoes

> Firms are "price takers”, i.e. they have no significant contr
over product price

> Free entry and exit
> Free flow of information

wants to find optimal production pasit), 0<t <T.
production targex(T) = Xt
profit at timet is 11(x, X, t)

maximize profit functionaF {x} = [ Ti(x,%t) dt

Variational Methods & Optimal Control: lecture 22 — p.11/26

Boundary conditions

» End timet;: can be fixed or free
» End positiorx(t;): can be fixed or free

In the cases with free boundary conditions, we introducaragtor
transversal boundary conditions.

Variational Methods & Optimal Control: lecture 22 — p.10/26

Example: dynamic production

Profit calculation

» quadratic production cos® = a;x* + byx+ ¢y
> labor
> raw materials

» production increase cost = a2>'<2 +box+c
> new buildings
> recruiting and training costs

» revenua = pxwherep is the constant price per unit
> p = constdue to purely competitive market

» profit at timet is

(X, X,t) = px— Cy(X) — Ca(X)
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Example: dynamic production

Problem formulation: maximize total profit

]
F{x} — /0 PX—Ci(X) — Co(X) cit

subject tax(0) = 0 andx(T) = xr.

» notice that the control, and rate of change of state are the gee.,
u = X) but we write it as above for simplicity

» autonomous problem

v

the control is planned, and has quadratic costs
» admissible controls are unbounded
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Example: dynamic production

Solution (forag, a; # 0)

X(t) = Ae\/?_;t +Be %! + 1P
2a
whereA andB are determined by the fixed end poirt9) = X, and
X(T) = X7.

This gives the optimal production schedule.

» no dependence an or ¢, (these are constant costs and so shouldn’t
effect production strategy)

» no dependence dm because this is a linear cost in increasing
production, and so occurs regardless of how we increasetiover
(to get to the final production targe{T) = Xt).
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Example: dynamic production

Euler-Lagrange equations

don om _
dtox ox
_do& G
dt ax ox
d .
— gt [280X+bp] —p+220x+by = 0
—2a2'x'—p+2a1x+b1 =0
x_ 8, _ ZPth
dp 2&2

fora; #0
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Example: dynamic production

What happens if we make the end poi(T ) free, i.e. we don’t have a
production target at tim&?

Then we get a natural boundary condition

M %2 2aktby) =0
OXlr  OX iy -
So, rearranging, we get
: b
X(T) = —2—;2

» constantsh andB are determined by end-point conditio(®) = xo
andx(T) = — 2

- 2a,
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Example: dynamic production

» production cost€; = x? + 5x o=

» production increase costs 09— ree end point
Cp = 25 + 5% 08
> p—10 0.7
> T=1 06
> X=0,xr=1 05
0.4
0.3
0.2
0.1
0
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Example: optimal economic growth

» GDPY/(t) is a function of labot.(t), and capitaK(t)
» The production functioiY (t) = fo(K,L) is homogeneous of degree

one, e.g.
Y(t) =L(t) f2(K/L, 1) =L(t) F(K/L)
» Hence we normalize all quantities by populatlon
y = Y/L GDP per capita
k = K/L Capital investment per capita
¢ = C/L Consumption per capita

and writey(t) = f (k) wheref is assumed to be a strictly concave,
monotonically increasing function, with slope decreagiog « at
0, to O atoo.
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Example: optimal economic growth

How much should be consumed, and how much invested for future
consumption?

» optimal theory of saving (Ramsey, 1928)

» Total capital at time is K(t)

» Total population (labor forcé)(t), which grows at exogenous rate
n, e.g.[ =nL

» Homogeneous quantity called GDP denoYégt)

» GDP can either be consuméxt) or invested to gdf((t), or used to
replace depreciated capifaK(t).

Y(t) = C(t) +K(t) + pK(t)
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Example: optimal economic growth

Consider the rate of per capita investment

(LG (KY_K (KLY K K_K
S dt\L/) L L2/ L L L

using the fact thai'L/L =n. Now we assumed that GDP could be
expended in one of three ways, leading to

Y =C+K+pK
which we also divide by to obtain

y=c+k+ (u+nk
which, when we substitute= f (k) gives

c(t) = f(K) — k— (u+n)k(t)
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Example: optimal economic growth

» We want to maximize the totaitility

» Utility of per capita consumption 9 (c). This would also be a
strictly concave, monotonically increasing function (@ating to
the law of diminishing marginal utility, i.dJ”(c) < 0 <U’(c)).

» Utility in the future is discounted by rate e.qg. is given byJ (c)e ™
» Our control is how much we consume (and hence what is left to
investll<), and the state is the per capita investrignt.
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Example: optimal economic growth

The E-L equations are

wherey(k, k) = U <f(k) —k— (et n)k(t)) e™, so

4. _aufdr 1
ai® dc ° dc|ak WM =0
ddu . du[ df ‘

=l S - - —
© dtdc "¢ dc [r gk P =0
PUdc . du[ df '
= L S - - —
© a@a® dc [r gk P =0
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Example: optimal economic growth

We want to maximize the totaltility over time, e.g.

F{c} = /OTU(c)e”dt

subject to

c(t) = f(k) —k— (u+n)k(t)
with k(0) = ko, andk(T) = kr.

Substitutec into the functional and we get

F{k} = /OTU (f(k) —k— (u+ n)k(t)) et
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Example: optimal economic growth

We knowe™" £ 0, so we divide it out, and rearrange to get

de_f  pn 9]V
a - |FTH dk | U”

which together with
k= f(K) —c(t) — (u+ k(1)

determines the optimal solution of the system. Remembenrggigen
» U the utility
» f the per capita production as a function of capital
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Example: optimal economic growth

Example U (c) = log(c), thenU’ = 1/candU” = —1/¢?, so
S¢_ gcwherea = — r+ +n—g
dt - M~ dk

>0 o(t) = A€

To solve fork, take linear production model, e g= Bk, and then

k= yk(t) — c(t) wherey = (B—p—n)

So
k(t):Bé"Jrﬂ :Bé"+@
y—a r
with A andB determined bk(0) = ko, andk(T) = k.
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Example: optimal economic growth

To maintain constant consumptio(t) we require¢ = 0, and so we must

have

a(:r‘i‘u"‘n

To maintain constant investment, we require

k= f(k) —c(t) — (u+n)k(t) =0

which together determine a solutiéci, k*), where the systemis in
equilibrium.

For the examplg = Bk

r+p+n

k= B and c=(B—p—n)k
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