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Tutorial 5. Wednesday 10th October

1. Capillaries: Imagine a slender, open-end cylinder dipped into a largemzth. It
is well known that the cylinder acts as a capillary tube, dredwater will rise up the
tube, and moreover that the shape of the surface of the wesielei the tube will have
a curved shape, as shown in the figure.

For convenience, we assume the water level outside thedeylis at height = 0, and
that the cylinder’s center of rotation is theaxis. We will consider it in cylindrical co-
ordinatey(r, 0, z), where the cylinder will have radiug. Given the radial symmetry
of the problem, we will describe the height of water in theirgér by z(r), and we
denotezy = z(0) andz, = z(R), but note that these are not fixed boundary conditions
(the end-points are free).

At equilibrium, the potential energy of this system will benimized. The potential
energy is made up of the following components:

e The gravitational potential:

R z R 22
G{z} = 27rApg/ 7“/ sdsdr = 27rApg/ rS dr,
o Jo 0

where/ly is the difference between the density of the liquid and aid qis the
gravitational constant.

e The surface energy in the interfaces between the liquid ahd &he cylinder
walls), the gas and solid, and the air and liquid, given by

S{z} = AyAA(QsL) +7LeDA(QLe)
R
= 2nRAvz, + QW'ng/ rv14 2?2 —rdr,
0
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where

— The constant parameteysq, 757, andy, ¢ are the respective parameters de-
termining the strength of affiliation or attraction betwebease three compo-
nents. We can think of a parameteas the tension on the surface with units
corresponding to force along a line of unit length. We take= ~vs;, —vsq-

- Qsa, Qg1 andQQ g are the surfaces between the respective phases.

— A(-) denotes the surface aredA(-) represents the surface area deformation
from the case without the cylinder, for instance, the undeéal surfacél;
would have area given by a circular disk (radigisarear R? = 27 fOR rdr),
and the undeformed surfa€g s would correspond to the liquid in the cylin-
der at the same height as the water bath.

so the integrals above are trying to minimize the energyltiagufrom tension
in the surfaces due to their deformation from the case withwicylinder. The
first integral is the energy in the gas-liquid surface, ardscond is the energy
resulting in the liquid-solid surface minus the energy fribra solid-gas interface
it replaces.

Use calculus of variations to determine the height and sbbte water surface inside
the cylinder.

2. Inequality constraints and broken extremals: solve the isoperimetric problem in-
side a square region, i.e., what is the shape that contagngartest area without ex-
ceeding a given perimetér, given that the shape must be entirely contained in a square
with sides2IV in length.

Note that the problem is uninteresting fof > L/27 because a circle of radius
R = L/2r satisfies the isoperimetric constraint, and fits inside tinease, and by
previous work this is clearly the maximal area region (tHotlgere are actually mul-
tiple possible circles that might fit). Likewis@|V < L is uninteresting, because we
cannot meet the perimeter constraint without having a canshape, so the obvious
solution is to contain the entire area of the square, but tay@erimeter dip into the
shape along a line enclosing zero area. So we consider the cas

L/8 <W < L/2m.

We will simplify the problem in a few ways. Firstly, the refta@ symmetries of the
problem suggest that we could considgs of the square, rather than the whole square
(see the figure, which showgs8 of the square with side&dl’.).
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v

where the left end point may move along th@xis (between the constraints), and the
right end-point is free to move along the boundary y. We will define the end-point
to be(l’l, yl)

The area and perimeter of the region are easily measured by

A{y}:8/ y—xdr. and L{y}:8/ V1+y?de.
0 0

Ignoring the factor of 8 in each term, and including the isopetric constraint into
the problem via a Lagrange multiplier, we obtain an objecfunction

J{y}:/ y—z+A\/1+y?de.
0

Find the shape that maximizes the area without exceedingettimeter constraint.
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3 Terminal costs and optimal control: We originally posed Newton’s aerodynamic
nose-cone problem for a nose cone pointed upwards (with fteawd/ards). We could
equally have posed it with the flow from right to left as in thgufie below, where the
shape is described byu), v being the horizontal axis.

A

In this case, a similar simplification of the problem reduitesfunction of interest to

rr'3

1+ 72

1F{}—1(L)2+/L d
o r —2r ; w

Questions:
e Show that the above function results from a simple transétion of the previous
problem.

e Use natural end-point conditions for a problem with a teahgwost to determine
an equation to fina(L).



