Advanced Mathematical Perspectives 1 Lecture 4: Tools of the Trade: Matlab, and Tesselation in nature

Matthew Roughan

<matthew.roughan@adelaide.edu.au>

www.maths.adelaide.edu.au/matthew.roughan/notes/AMP1/

School of Mathematical Sciences, University of Adelaide

<ロト (四) (三) (三) (三)

Section 1

Tools of the Trade: Matlab

3

Coding is useful

- your research
 - these days much mathematical research is done using computers
 - simulation, computational algebra, computer proofs
 - computers may even be your research (e.g., my work)
- producing papers/reports/presentations
 - ▶ figures and tables are often done using code, *e.g.*, MATLAB
- dealing with data
 - cleaning it
 - visualising it
- automating your everyday tasks
 - analysing marks from your students
 - script to filter/clean BibTeX
 - processing LATEX in non-standard ways (e.g., creating outlines)

通 ト イヨ ト イヨ ト

Coding makes your ideas real

- it makes your ideas concrete
- in doing so irons out the bugs
- forces a discipline on your work
- gives you another way to share your work with others

Script vs Compile

• interpreted vs compiled languages

- interpreter coverts program to executable line by line
- compiler passes through whole program multiple times to create executable
- interpreted may be slower (in execution) than compiled
- scripts are more portable (in some sense)
- not always so strict:
 a.g. byte compiled languages (lava)

e.g., byte compiled languages (Java, Matlab, Python)

- script vs "program"
 - scripts have less baggage
 - easy access to/from other programs
 - interpreted languages usually easier to get going
 - $\star\,$ often scripts have soft, or implicit types
- use the right tool
 - scripts as glue to connect "programs"
 - programs for big projects

(人間) とうき くうとう う

Where does MATLAB fit in?

You should be learning MATLAB right now in Scientific Computing

- $\bullet~\mathrm{MATLAB}$ is a great first language for mathematicians and engineers
 - its basics are pretty simple you can get it going quickly
 - it's powerful for numerical tasks, particularly linear algebra
 - it's very productive
 - it's used in a fair number of courses here
- you shouldn't stop there though
 - dynamic types (in MATLAB) make it easy to get going, but will hamper you when you want to do more advanced coding
 - other languages have useful tools and tricks
 - other languages introduce you to new concepts that make you a better coder

A language that doesn't affect the way you think about programming, is not worth knowing.

Epigrams on Programming 19, Alan J. Perlis

(日) (同) (日) (日) (日)

Matlab in AMP

In this course, we aren't strictly teaching you MATLAB

• you need to keep up with your other subjects

We are definitely going to use it

And you might pick up a few tricks other people in your year don't know

- Our sessions are there for my to help you with everything, including coding
- Extra pointers are on MyUni
 - simple notes on Matlab
 - notes on debugging software
 - notes on top 10 tricks and tips for Matlab

Section 2

Tessellation in Nature

э

(日) (周) (三) (三)

Roughly, a tessellation¹ is where we cover the plane using one or more geometric shapes called *tiles*, with no overlaps or gaps.

- We'll start with regular, repeated tilings
- And then think about irregularity
- To do this properly, we need to think formally about symmetry
- But let's start with some examples

¹The word tessellation comes from the latin *tessella*, a small (square) piece of a mosaic. So the terms tiling and tessellation are directly linked a = a = a = a

Honeycomb

https://en.wikipedia.org/wiki/File:Apis_florea_nest_closeup2.jpg

Matthew Roughan (School of Mathematical

- 3

イロト イヨト イヨト イヨト

Graphene

https://en.wikipedia.org/wiki/File:Graphen.jpg

ヘロト 人間 ト くほ ト くほ トー

Snake skin

http://7-themes.com/6926920-green-snake.html

ヘロト 人間 ト くほ ト くほ トー

Pineapple

2

ヘロト 人間 ト くほ ト くほ トー

Turtle shell https://www.fws.gov/northflorida/seaturtles/ turtlefactsheets/loggerhead-sea-turtle.htm

Matthew Roughan (School of Mathematical

AMP1

10 / 12

Giant's Causeway https://en.wikipedia.org/wiki/File: Giants_causeway_closeup.jpg

Insect eyes
https://en.wikipedia.org/wiki/File:
Thomas_Shahan_-_Tabanus_lineola_(by).jpg

<ロ> (日) (日) (日) (日) (日)

Pangolin http://www.pangolinsg.org/pangolins/

(日) (周) (三) (三)

Questions:

- Why do we see so many?
- How could we classify them?

∃ ▶ ∢ ∃ ▶

Activity

• Write code to generate tesselations, and include the output pictures in a LATEX document

くほと くほと くほと

Takeaways

- Matlab
- Tesselation in Nature

2

イロト イヨト イヨト イヨト

Further reading I

Jinny Beyer, *Designing tessellations: The secrets of interlocking patterns*, Contemporary Books, 1999.

Frank A. Farris, *Creating symmetry: The artful mathematics of wallpaper patters*, Princeton University Press, 2015.

Dale Seymour and Jill Britton, *Introduction to tessellations*, Dale Seymour Publications, 1989.

A B F A B F