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Section 1

Sinusoidal Patterns
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And last of all we have the secondary forms of crystals burst-
ing in upon us, and sparkling in the rigidity of mathematical
necessity and telling us, neither of harmony of design, useful-
ness or moral significance, nothing but spherical trigonometry
and Napier’s analogies. It is because we have blindly excluded
the lessons of these angular bodies from the domain of human
knowledge that we are still in doubt about the great doctrine
that the only laws of matter are those which our minds must
fabricate, and the only laws of mind are fabricated for it by
matter.

James Clerk Maxwell
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Periodicity

One of the symmetries we saw before was translational, which, leads
to periodicity

I regular tilings were all periodic

We’re going to look into this a great deal more today

Let’s start in 1D, and then move to 2D

We’ll start with a formal definition, and then move onward
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Periodicity
x(t + nT ) = x(t) for any n = 1, 2, . . .

t

T

Period = T
(the minimal value for which the above is true)

Frequency f = 1/T
(if T is a measure of time, frequency is measured in Hz).
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Sinusoids are the most common example of periodic signals
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The figure shows a sine wave y = sin(2πft), and its power spectrum.
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Two sine waves combine to create beats
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Sum-to-product trig identity

y = sin(2πf1t) + sin(2πf2t) = 2 sin

(
2π(f2 + f1)t

2

)
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)
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Peridocity and Sinusoids

We can model any periodic function as a (possibly infinite) sum of
sinusoids

At the moment, you have to take this on faith, but I will provide a
method for getting the right sine waves later on

What’s more interesting, is that we can also generate apparently
random signals from sine waves
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Example: ECG
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How does the machine that goes “beep” in a hospital work? Its looking
for the period of your heartbeat, looking at a signal like this. The figure
shows the (slightly) more complex set of sine wave frequencies I need to
model this signal.
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Example: almost random
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This shows the sum of only four sine waves to generate a signal that to all
appearances seems random. It isn’t, but its period is much longer than the
segment shown.
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Equal temperament scale in music
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The scale is logarithmic and modular (mod 12)
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Patterns in sounds: Harmonics

Real instruments don’t generate pure sin waves

f

2f

3f

Vibrational resonances at fundamental frequency f and at 2f , 3f , . . .
We hear a mix of these harmonics
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Harmonics of A (440 Hz)

Harmonic Frequency Normalized Note name how close

1 (fundamental) 440Hz 440Hz A 100%
2 880Hz 440Hz A 100%
3 1320Hz 660Hz E 100%
4 1760Hz 440Hz A 100%
5 2200Hz 550Hz C# 99%
6 2640Hz 660Hz E 100%
7 3080Hz 770Hz G 98%
8 3520Hz 440Hz A 100%
9 3960Hz 495Hz B 100%
10 4400Hz 550Hz C# 99%
11 4840Hz 605Hz D 103%
12 5280Hz 660Hz E 100%
13 5720Hz 715Hz F# 97%
14 6160Hz 770Hz G 98%
15 6600Hz 825Hz G# 99%
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Harmonics and scales
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Tone/Timbre of instrument

Tone/Timbre of instrument is in part determined by proportion of different
harmonics.

Cosine, 110 Hz , Cosine, 440 Hz

Guitar, A
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Section 2

An aside: pseudo-random numbers
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An aside: pseudo-random numbers

Computers are deterministic
I given a certain state, and input, they always produce the same output
I maybe doesn’t seem that way, but remember a computer with 4 GB of

RAM can have
24,000,000,000

states, so they can be somewhat hard to anticipate
I the whole universe has only ∼ 1080 ' 2270 fundamental particles

https://www.physicsoftheuniverse.com/numbers.html

But sometimes we would like random numbers
I computer games
I cryptography
I simulations
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An aside: pseudo-random numbers

Computers generate pseudo-random numbers

Simple algorithm is linear congruential generator

Xn+1 = (aXn + c) mod m

where we have multiplier a, increment c, and the modulus m

Essentially this generates a sequence with a very long period
I period can’t be longer than m, but can be of that order
I example [PFTV92, p.284]: a = 1664525, c = 1013904223,m = 232

Note, there are better approaches now, but we won’t go into them in
detail

I [PFTV92, p.284] call this a quick and dirty approach
I Mersenne twister has period 219937 − 1
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Section 3

Spirograph
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Parametric curves

Another way to extend to 2D is through parametric curves: i.e., we express
the (x , y) coordinates as a function of some parameter t.

Example:

x(t) = cos(t) + cos(n1t)/2 + sin(n2t)/3

y(t) = sin(t) + sin(n1t)/2 + cos(n2t)/3
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Non-linear parametric equations

We can do even more with non-linear curves

x(t) = 16 sin3(t),

y(t) = 13 cos(t)− 5 cos(2t)− 2 cos(3t)− cos(4t).
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Polar coordinates
Yet another way is to express a curve in polar coordinates (θ, r)

x = r cos θ,

y = r sin θ.

Example: a rose or rhodonea curve curve

r = cos
(n
d
θ
)
.
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Other topics

Non-linear excitation can cause Faraday waves, which can exhibit
interesting patterns.

Lissajous Curves and the ABC logo
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Activity

Generate some sinusoidal curves
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Further reading I

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling,
Numerical recipes in c: The art of scientific computing, 2nd ed., Cambridge
University Press, 1988-92, Available at http://www.nr.com/.
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