Advanced Mathematical Perspectives 1

Lecture 7: Periodicity and superposition of sines

Matthew Roughan
matthew.roughan@adelaide.edu.au
www.maths.adelaide.edu.au/matthew.roughan/notes/AMP1/

School of Mathematical Sciences,
University of Adelaide
THE UNIVERSITY
ofADELAIDE

Section 1

Sinusoidal Patterns

And last of all we have the secondary forms of crystals bursting in upon us, and sparkling in the rigidity of mathematical necessity and telling us, neither of harmony of design, usefulness or moral significance, nothing but spherical trigonometry and Napier's analogies. It is because we have blindly excluded the lessons of these angular bodies from the domain of human knowledge that we are still in doubt about the great doctrine that the only laws of matter are those which our minds must fabricate, and the only laws of mind are fabricated for it by matter.

James Clerk Maxwell

Periodicity

- One of the symmetries we saw before was translational, which, leads to periodicity
- regular tilings were all periodic
- We're going to look into this a great deal more today
- Let's start in 1D, and then move to 2D
- We'll start with a formal definition, and then move onward

Periodicity

$$
x(t+n T)=x(t) \text { for any } n=1,2, \ldots
$$

- $\operatorname{Period}=T$
(the minimal value for which the above is true)
- Frequency $f=1 / T$
(if T is a measure of time, frequency is measured in Hz).

Sinusoids are the most common example of periodic signals

The figure shows a sine wave $y=\sin (2 \pi f t)$, and its power spectrum.

Sinusoids are the most common example of periodic signals

The figure shows a sine wave $y=\sin (2 \pi f t)$, and its power spectrum.

Two sine waves combine to create beats

Sum-to-product trig identity

$$
y=\sin \left(2 \pi f_{1} t\right)+\sin \left(2 \pi f_{2} t\right)=2 \sin \left(\frac{2 \pi\left(f_{2}+f_{1}\right) t}{2}\right) \cos \left(\frac{2 \pi\left(f_{2}-f_{1}\right) t}{2}\right)
$$

Peridocity and Sinusoids

- We can model any periodic function as a (possibly infinite) sum of sinusoids
- At the moment, you have to take this on faith, but I will provide a method for getting the right sine waves later on
- What's more interesting, is that we can also generate apparently random signals from sine waves

Example: ECG

How does the machine that goes "beep" in a hospital work? Its looking for the period of your heartbeat, looking at a signal like this. The figure shows the (slightly) more complex set of sine wave frequencies I need to model this signal.

Example: almost random

This shows the sum of only four sine waves to generate a signal that to all appearances seems random. It isn't, but its period is much longer than the segment shown.

Equal temperament scale in music

The scale is logarithmic and modular (mod 12)

Patterns in sounds: Harmonics

Real instruments don't generate pure sin waves

Vibrational resonances at fundamental frequency f and at $2 f, 3 f, \ldots$ We hear a mix of these harmonics

Harmonics of A $(440 \mathrm{~Hz})$

Harmonic	Frequency	Normalized	Note name	how close
1 (fundamental)	440 Hz	440 Hz	A	100%
2	880 Hz	440 Hz	A	100%
3	1320 Hz	660 Hz	E	100%
4	1760 Hz	440 Hz	A	100%
5	2200 Hz	550 Hz	$\mathrm{C} \#$	99%
6	2640 Hz	660 Hz	E	100%
7	3080 Hz	770 Hz	G	98%
8	3520 Hz	440 Hz	A	100%
9	3960 Hz	495 Hz	B	100%
10	4400 Hz	550 Hz	$\mathrm{C} \#$	99%
11	4840 Hz	605 Hz	D	103%
12	5280 Hz	660 Hz	E	100%
13	5720 Hz	715 Hz	$\mathrm{~F} \#$	97%
14	6160 Hz	770 Hz	G	98%
15	6600 Hz	825 Hz	$\mathrm{G} \#$	99%

Harmonics and scales

Tone/Timbre of instrument

Tone/Timbre of instrument is in part determined by proportion of different harmonics.

- Cosine, $110 \mathrm{~Hz}=[\square$, Cosine, $440 \mathrm{~Hz}=\square$
- Guitar, $A=\boxed{ }$

Section 2

An aside: pseudo-random numbers

An aside: pseudo-random numbers

- Computers are deterministic
- given a certain state, and input, they always produce the same output
- maybe doesn't seem that way, but remember a computer with 4 GB of RAM can have

$$
2^{4,000,000,000}
$$

states, so they can be somewhat hard to anticipate

- the whole universe has only $\sim 10^{80} \simeq 2^{270}$ fundamental particles https://www.physicsoftheuniverse.com/numbers.html
- But sometimes we would like random numbers
- computer games
- cryptography
- simulations

An aside: pseudo-random numbers

- Computers generate pseudo-random numbers
- Simple algorithm is linear congruential generator

$$
X_{n+1}=\left(a X_{n}+c\right) \quad \bmod m
$$

where we have multiplier a, increment c, and the modulus m

- Essentially this generates a sequence with a very long period
- period can't be longer than m, but can be of that order
- example [PFTV92, p.284]: $a=1664525, c=1013904223, m=2^{32}$
- Note, there are better approaches now, but we won't go into them in detail
- [PFTV92, p.284] call this a quick and dirty approach
- Mersenne twister has period $2^{19937}-1$

Section 3

Spirograph

Parametric curves

Another way to extend to 2D is through parametric curves: i.e., we express the (x, y) coordinates as a function of some parameter t.

Example:

$$
\begin{aligned}
& x(t)=\cos (t)+\cos \left(n_{1} t\right) / 2+\sin \left(n_{2} t\right) / 3 \\
& y(t)=\sin (t)+\sin \left(n_{1} t\right) / 2+\cos \left(n_{2} t\right) / 3
\end{aligned}
$$

$n_{1}=5, n_{2}=11$

$n_{1}=6, n_{2}=14$

$n_{1}=7, n_{2}=11$

Non-linear parametric equations

We can do even more with non-linear curves

$$
\begin{aligned}
& x(t)=16 \sin ^{3}(t) \\
& y(t)=13 \cos (t)-5 \cos (2 t)-2 \cos (3 t)-\cos (4 t)
\end{aligned}
$$

Polar coordinates

Yet another way is to express a curve in polar coordinates (θ, r)

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Example: a rose or rhodonea curve curve

$$
r=\cos \left(\frac{n}{d} \theta\right)
$$

$n=5, d=4$

$n=6, d=1$

Other topics

- Non-linear excitation can cause Faraday waves, which can exhibit interesting patterns.
- Lissajous Curves and the ABC logo

Activity

Generate some sinusoidal curves

Further reading I

T- William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical recipes in c: The art of scientific computing, 2nd ed., Cambridge University Press, 1988-92, Available at http://www.nr.com/.

