Advanced Mathematical Perspectives 1

Lecture 10: Diffusion and Difference Equations

Matthew Roughan
matthew.roughan@adelaide.edu.au
www.maths.adelaide.edu.au/matthew.roughan/notes/AMP1/

School of Mathematical Sciences,
University of Adelaide

Fourier's analytical theory of heat (final form, 1822), devised in the Galileo-Newton tradition of controlled observation plus mathematics, is the ultimate source of much modern work in the theory of functions of a real variable and in the critical examination of the foundation of mathematics.

Eric Temple Bell, The Development of Mathematics (1940) p. 165

I fart in your general direction.
French soldier, Monty Python and the Holy Grail

Section 1

Diffusion Systems

Diffusion

- Assume mixing takes time, even in a gas
- Start with a concentration of some substance
- It spreads, or diffuses through the medium
- It's a model for
- various fluids and gases
- the spread of heat through a solid
- some problems in electronics
- spread of disease
- Key ideas
- no material is created or destroyed, only moved around
- rate of movement depends on concentrations themselves

Diffusion in 1D

Imagine a (thin) metal bar, being heated at one end

Assumptions

- Thin means we can approximate it as 1D
- Conservation of energy means the heat cannot be destroyed, so must just move around ${ }^{1}$, so any change in temperature must be from inflow or outflow of heat.
- Fourier's law: the time rate of heat transfer through a material is proportional to the negative gradient in the temperature and to cross-sectional area.
${ }^{1}$ In reality, some heat is radiated away, but lets assume it isn't too much for the moment.

Diffusion in 1D

Constants and variables

- $u(x, t)$ is the temperature (in Kelvins)
- at point $x \in[0, L]$ along the bar of length L
- at time $t \geq 0$
- $c=$ specific heat
$=$ amount of heat needed to increase a unit mass by one degree
- $\rho=$ density (mass per unit length)
- $k=$ thermal conductivity
- $\alpha=$ thermal diffusivity

$$
\alpha=\frac{k}{c \rho}
$$

i.e., how easy it is for heat to diffuse across the medium

material	α
copper	111
wood	0.082

Flow of heat

Fourier's law: the heat flux $q(x, t)$ is the amount of thermal energy that flows to the right per unit surface area per unit time, and is given by

$$
\begin{equation*}
q(x, t)=-k \frac{\partial u}{\partial x} \tag{1}
\end{equation*}
$$

- intuitively, if there is a big temperature difference, heat flows faster
- the minus sign is there because heat flows from hot to cold
- the RHS is a partial derivative
- we don't teach you these until second year
- think of it as the rate of change of heat along the bar
- call this the gradient
- if u is constant in time, then

$$
\frac{\partial u}{\partial x}=\frac{d u}{d x}
$$

Conservation of energy

If no heat is added or lost ${ }^{2}$ then any changes in temperature must result from flow of heat, so balancing these we get

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{1}{c \rho} \frac{\partial q}{\partial x} \tag{2}
\end{equation*}
$$

- LHS = change in temperature
- RHS $=$ flow of heat divided by the amount needed to heat up region

[^0]
Rate of change

Substitute (1) into (2) and we get

$$
\begin{align*}
\frac{\partial u}{\partial t} & =-\frac{1}{c \rho} \frac{\partial q}{\partial x} \\
& =\frac{k}{c \rho} \frac{\partial^{2} u}{\partial x^{2}} \\
& =\alpha \nabla^{2} u \tag{3}
\end{align*}
$$

- This is a PDE (a Partial Differential Equation), sometimes called the heat equation
- The operator ∇^{2} is called Laplace's operator, or the Laplacian
- The solve it, we should add in initial an boundary conditions, but I am going to hack away

Example

http://www.maths.adelaide.edu.au/matthew.roughan/notes/ AMP1/files/diffusion1.gif

Diffusion as Smoothing

- We can think of diffusion as a "smoothing out" or spreading
- notice the Gaussian (Bell curve) shape
- Underlying model is often Brownian motion of molecules
- molecules bounce around at random, slowly diffusing outwards, or spreading kinetic energy (heat)
- think of this as a "drunkard's walk"
- more on this next week

Numerical Solution by Difference Equations

- I can't teach you how to solve these mathematically in one lesson (see extra notes at end of next lecture for a solution)
- solution actually involves sinusoids and Fourier transforms
- But we can solve them numerically, by using an approximation called a difference equation (or a finite difference method)
- Intuitively, we break space and time into small pieces

Numerical Solution: time

The definition of derivative

$$
\frac{d x}{d t}=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}
$$

leads to an obvious approximation: for small h

$$
\frac{d x}{d t} \simeq \frac{x(t+h)-x(t)}{h}
$$

We'll use (without justifying) the same approximation for the partial derivative $\partial u / \partial t$ and rearrange (3) as follows

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\alpha \nabla^{2} u \\
\frac{u(x, t+d t)-u(x, t)}{d t} & \simeq \alpha \nabla^{2} u \\
u(x, t+d t) & \simeq u(x, t)+d t \times \alpha \nabla^{2} u
\end{aligned}
$$

for small $d t$. We can iterate this, starting at $t=0$, and calculating $u(\cdot, \cdot)$ forward in time, if we know the Laplacian.

Numerical Solution: Laplacian

Take a grid of points along our heated metal bar

$$
x_{i}=i \times d x
$$

for $i=0,1,2, \ldots, n_{x}$ for small $d x$.
Approximate (as with time derivative)

$$
\frac{\partial u}{\partial x} \simeq \frac{u\left(x_{i+1}, t\right)-u\left(x_{i}, t\right)}{x_{i+1}-x_{i}}=\frac{u\left(x_{i+1}, t\right)-u\left(x_{i}, t\right)}{d x}
$$

Similarly we can approximate the second order partial derivative

$$
\frac{\partial^{2} u}{\partial x^{2}} \simeq \frac{u\left(x_{i+1}, t\right)-2 u\left(x_{i}, t\right)+u\left(x_{i-1}, t\right)}{d x^{2}}
$$

Numerical Solution by Difference Equations

Put these together and we get

$$
u\left(x_{i}, t_{j+1}\right)=u\left(x_{i}, t_{j}\right)+d t \times \alpha\left[\frac{u\left(x_{i+1}, t_{j}\right)-2 u\left(x_{i}, t_{j}\right)+u\left(x_{i-1}, t_{j}\right)}{d x^{2}}\right]
$$

In Matlab, given starting values of $u\left(0, x_{j}\right)$ we can write

$$
\begin{aligned}
& \text { for } j=1 \text { : } \text { num_t }^{\prime} \\
& \quad \text { for } i=2 \text { :num_x-1 } \\
& \quad u(i, j+1)=u(i, j)+\ldots \\
& \quad \text { alpha*dt*(} u(i+1, j)-2 * u(i, j)+u(i-1, j)) / d x^{\wedge} 2 \text {; } \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

We'll have a go with this in your practical.

Numerical Solution by Difference Equations

- Need to set initial and boundary conditions
- Need to set small enough $d t$ and $d x$ to make this work.
- e.g., stability requires $d t<d x^{2} / 2 \alpha$
- There are tricks involved in making this work well (e.g., to make it efficient), or to rearrange it to be more stable, but if we don't mind a few extra compute cycles this will be OK for now.
- We can extend to 2D metal plate
- we need 3D arrays $u(i, j, k)$

Activities

- Start by debugging some Matlab code to do diffusions
- learn how to debug
- see how I would code a function

Further reading I

Benoit Cushman-Roisin, Environmental transport and fate: Diffusion equation, https://thayer.dartmouth.edu/~d30345d/courses/engs43/ DiffusionEquation.pdf.

Differential equations - notes,
http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx.

[^0]: ${ }^{2}$ We can easily generalise, but let's keep it simple.

