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Lecture 10: Diffusion and Difference Equations
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Fourier's analytical theory of heat (final form, 1822), devised
in the Galileo-Newton tradition of controlled observation plus
mathematics, is the ultimate source of much modern work in
the theory of functions of a real variable and in the critical

examination of the foundation of mathematics.
Eric Temple Bell, The Development of Mathe-

matics (1940) p. 165

| fart in your general direction.
French soldier, Monty Python and the Holy Grail
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Section 1

Diffusion Systems



Diffusion

@ Assume mixing takes time, even in a gas
@ Start with a concentration of some substance
o |t spreads, or diffuses through the medium
o It's a model for
» various fluids and gases
> the spread of heat through a solid
» some problems in electronics
» spread of disease
o Key ideas

» no material is created or destroyed, only moved around
» rate of movement depends on concentrations themselves
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Diffusion in 1D

Imagine a (thin) metal bar, being heated at one end

Assumptions
@ Thin means we can approximate it as 1D

o Conservation of energy means the heat cannot be destroyed, so must
just move around?, so any change in temperature must be from inflow
or outflow of heat.

o fourier’s law: the time rate of heat transfer through a material is
proportional to the negative gradient in the temperature and to
cross-sectional area.

Yn reality, some heat is radiated away, but lets assume it isn't too much for the
moment.
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Diffusion in 1D
Constants and variables

@ u(x,t) is the temperature (in Kelvins)

» at point x € [0, L] along the bar of length L
» attimet >0

@ ¢ = specific heat
= amount of heat needed to increase a unit mass by one degree
@ p = density (mass per unit length)
@ k = thermal conductivity
o « = thermal diffusivity
k
o= —
cp
i.e., how easy it is for heat to diffuse across the medium
material ‘ o
copper 111
wood 0.082
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Flow of heat

Fourier's law: the heat flux g(x, t) is the amount of thermal energy that
flows to the right per unit surface area per unit time, and is given by

ou
X, t) = —k— 1
q(x 1) e (1)
@ intuitively, if there is a big temperature difference, heat flows faster
» the minus sign is there because heat flows from hot to cold
o the RHS is a partial derivative

» we don't teach you these until second year

» think of it as the rate of change of heat along the bar
» call this the gradient

» if uis constant in time, then

ou du

Ox  dx
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Conservation of energy

If no heat is added or lost? then any changes in temperature must result
from flow of heat, so balancing these we get

ou 1 Jq
_— = —— 2
ot cp Ox (2)

@ LHS = change in temperature

@ RHS = flow of heat divided by the amount needed to heat up region

2We can easily generalise, but let’s keep it simple.
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Rate of change

Substitute (1) into (2) and we get

ou 1 0q
.  cpox
_ k 0%u
= oae
= aViu (3)

@ This is a PDE (a Partial Differential Equation), sometimes called the
heat equation

@ The operator V2 is called Laplace’s operator, or the Laplacian

@ The solve it, we should add in initial an boundary conditions, but |
am going to hack away
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Example
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http://www.maths.adelaide.edu.au/matthew.roughan/notes/
AMP1/files/diffusionl.gif
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Diffusion as Smoothing

@ We can think of diffusion as a “smoothing out” or spreading
» notice the Gaussian (Bell curve) shape
@ Underlying model is often Brownian motion of molecules
» molecules bounce around at random, slowly diffusing outwards, or

spreading kinetic energy (heat)
» think of this as a “drunkard’s walk”
» more on this next week
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Numerical Solution by Difference Equations

@ | can’t teach you how to solve these mathematically in one lesson (see
extra notes at end of next lecture for a solution)
» solution actually involves sinusoids and Fourier transforms

@ But we can solve them numerically, by using an approximation called
a difference equation (or a finite difference method)

@ Intuitively, we break space and time into small pieces

ﬂ» M(xi’ tj)

thIIIIIII;\HjIIIIIIIIII
Xy Xn1
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Numerical Solution: time
The definition of derivative

dx i x(t+ h) — x(t)
dt  h—0 h

leads to an obvious approximation: for small h

dx  x(t+h)—x(t)
dt h

We'll use (without justifying) the same approximation for the partial
derivative du/0t and rearrange (3) as follows

du

ot

u(x, t+ dt) — u(x, t)
dt

u(x,t+dt) ~ u(x,t)+dt x aVu

= aVa

~ aVu

for small dt. We can iterate this, starting at t = 0, and calculating u(-, )
forward in time, if we know the Laplacian.
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Numerical Solution: Laplacian

Take a grid of points along our heated metal bar
X; = ixdx

for i =0,1,2,..., ny for small dx.

Approximate (as with time derivative)

Ou u(xiy1,t) —u(xi t) _ u(xita, t) — u(xi, t)

ox Xit1 — X; dx

Similarly we can approximate the second order partial derivative

@ o u(xit1, t) = 2u(x;, t) + u(xi-1, t)
ox? dx?
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Numerical Solution by Difference Equations

Put these together and we get

u(xit1, t;) — 2u(x;, tj) + u(xi-1, t;)

u(xi, tjip1) = u(xi, tj) + dt x « 3

In MATLAB, given starting values of u(0, x;) we can write

for j = 1:num_t
for i = 2:num_x-1
u(i,j+1) = ud,j) + ...
alpha*dt*( u(i+1,j) - 2*u(i,j) + u(i-1,j) )/dx"2;
end
end

We'll have a go with this in your practical.
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Numerical Solution by Difference Equations

@ Need to set initial and boundary conditions
@ Need to set small enough dt and dx to make this work.
> e.g., stability requires dt < dx?/2«a
@ There are tricks involved in making this work well (e.g., to make it
efficient), or to rearrange it to be more stable, but if we don't mind a
few extra compute cycles this will be OK for now.
@ We can extend to 2D metal plate
» we need 3D arrays u(i,j, k)
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Activities

@ Start by debugging some Matlab code to do diffusions

> learn how to debug
» see how | would code a function
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Further reading |

@ Benoit Cushman-Roisin, Environmental transport and fate: Diffusion equation,
https://thayer.dartmouth.edu/~d30345d/courses/engs43/
DiffusionEquation.pdf

@ Differential equations — notes,
http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx.
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