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Fourier’s analytical theory of heat (final form, 1822), devised
in the Galileo-Newton tradition of controlled observation plus
mathematics, is the ultimate source of much modern work in
the theory of functions of a real variable and in the critical
examination of the foundation of mathematics.

Eric Temple Bell, The Development of Mathe-
matics (1940) p. 165

I fart in your general direction.

French soldier, Monty Python and the Holy Grail
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Section 1

Diffusion Systems
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Diffusion

Assume mixing takes time, even in a gas

Start with a concentration of some substance

It spreads, or diffuses through the medium

It’s a model for
I various fluids and gases
I the spread of heat through a solid
I some problems in electronics
I spread of disease

Key ideas
I no material is created or destroyed, only moved around
I rate of movement depends on concentrations themselves
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Diffusion in 1D
Imagine a (thin) metal bar, being heated at one end

Assumptions

Thin means we can approximate it as 1D

Conservation of energy means the heat cannot be destroyed, so must
just move around1, so any change in temperature must be from inflow
or outflow of heat.

Fourier’s law: the time rate of heat transfer through a material is
proportional to the negative gradient in the temperature and to
cross-sectional area.

1In reality, some heat is radiated away, but lets assume it isn’t too much for the
moment.
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Diffusion in 1D
Constants and variables

u(x , t) is the temperature (in Kelvins)
I at point x ∈ [0, L] along the bar of length L
I at time t ≥ 0

c = specific heat
= amount of heat needed to increase a unit mass by one degree

ρ = density (mass per unit length)

k = thermal conductivity

α = thermal diffusivity

α =
k

cρ

i.e., how easy it is for heat to diffuse across the medium

material α

copper 111
wood 0.082
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Flow of heat

Fourier’s law: the heat flux q(x , t) is the amount of thermal energy that
flows to the right per unit surface area per unit time, and is given by

q(x , t) = −k ∂u
∂x

(1)

intuitively, if there is a big temperature difference, heat flows faster
I the minus sign is there because heat flows from hot to cold

the RHS is a partial derivative
I we don’t teach you these until second year
I think of it as the rate of change of heat along the bar
I call this the gradient
I if u is constant in time, then

∂u

∂x
=

du

dx
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Conservation of energy

If no heat is added or lost2 then any changes in temperature must result
from flow of heat, so balancing these we get

∂u

∂t
= − 1

cρ

∂q

∂x
(2)

LHS = change in temperature

RHS = flow of heat divided by the amount needed to heat up region

2We can easily generalise, but let’s keep it simple.
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Rate of change

Substitute (1) into (2) and we get

∂u

∂t
= − 1

cρ

∂q

∂x

=
k

cρ

∂2u

∂x2

= α∇2u (3)

This is a PDE (a Partial Differential Equation), sometimes called the
heat equation

The operator ∇2 is called Laplace’s operator, or the Laplacian

The solve it, we should add in initial an boundary conditions, but I
am going to hack away
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Example
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http://www.maths.adelaide.edu.au/matthew.roughan/notes/

AMP1/files/diffusion1.gif
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Diffusion as Smoothing

We can think of diffusion as a “smoothing out” or spreading
I notice the Gaussian (Bell curve) shape

Underlying model is often Brownian motion of molecules
I molecules bounce around at random, slowly diffusing outwards, or

spreading kinetic energy (heat)
I think of this as a “drunkard’s walk”
I more on this next week
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Numerical Solution by Difference Equations

I can’t teach you how to solve these mathematically in one lesson (see
extra notes at end of next lecture for a solution)

I solution actually involves sinusoids and Fourier transforms

But we can solve them numerically, by using an approximation called
a difference equation (or a finite difference method)

Intuitively, we break space and time into small pieces

dx

x0 x1 x2 x3 x4 xn+1

x0 x1 x2 x3 x4 xn+1

tj+dt

tj

u(xi , tj)
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Numerical Solution: time
The definition of derivative

dx

dt
= lim

h→0

x(t + h)− x(t)

h

leads to an obvious approximation: for small h

dx

dt
' x(t + h)− x(t)

h

We’ll use (without justifying) the same approximation for the partial
derivative ∂u/∂t and rearrange (3) as follows

∂u

∂t
= α∇2u

u(x , t + dt)− u(x , t)

dt
' α∇2u

u(x , t + dt) ' u(x , t) + dt × α∇2u

for small dt. We can iterate this, starting at t = 0, and calculating u(·, ·)
forward in time, if we know the Laplacian.
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Numerical Solution: Laplacian

Take a grid of points along our heated metal bar

xi = i × dx

for i = 0, 1, 2, . . . , nx for small dx .

Approximate (as with time derivative)

∂u

∂x
' u(xi+1, t)− u(xi , t)

xi+1 − xi
=

u(xi+1, t)− u(xi , t)

dx

Similarly we can approximate the second order partial derivative

∂2u

∂x2
' u(xi+1, t)− 2u(xi , t) + u(xi−1, t)

dx2
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Numerical Solution by Difference Equations

Put these together and we get

u(xi , tj+1) = u(xi , tj) + dt × α
[
u(xi+1, tj)− 2u(xi , tj) + u(xi−1, tj)

dx2

]
In Matlab, given starting values of u(0, xj) we can write

for j = 1:num_t

for i = 2:num_x-1

u(i,j+1) = u(i,j) + ...

alpha*dt*( u(i+1,j) - 2*u(i,j) + u(i-1,j) )/dx^2;

end

end

We’ll have a go with this in your practical.
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Numerical Solution by Difference Equations

Need to set initial and boundary conditions

Need to set small enough dt and dx to make this work.
I e.g., stability requires dt < dx2/2α

There are tricks involved in making this work well (e.g., to make it
efficient), or to rearrange it to be more stable, but if we don’t mind a
few extra compute cycles this will be OK for now.

We can extend to 2D metal plate
I we need 3D arrays u(i , j , k)
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Activities

Start by debugging some Matlab code to do diffusions
I learn how to debug
I see how I would code a function
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Further reading I

Benoit Cushman-Roisin, Environmental transport and fate: Diffusion equation,
https://thayer.dartmouth.edu/~d30345d/courses/engs43/

DiffusionEquation.pdf.

Differential equations – notes,
http://tutorial.math.lamar.edu/Classes/DE/TheHeatEquation.aspx.
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