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Fourier’s analytical theory of heat (final form, 1822), devised
in the Galileo-Newton tradition of controlled observation plus
mathematics, is the ultimate source of much modern work in
the theory of functions of a real variable and in the critical
examination of the foundation of mathematics.

Eric Temple Bell, The Development of Mathe-
matics (1940) p. 165

I fart in your general direction.

French soldier, Monty Python and the Holy Grail
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Section 1

Diffusion in higher dimensions
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Diffusion

Assume mixing takes time, even in a gas

Start with a concentration of some substance

It spreads, or diffuses through the medium

Its a model for
I various fluids and gases
I the spread of heat through a solid
I some problems in electronics
I spread of disease

Key ideas
I no material is created or destroyed, only moved around
I rate of movement depends on concentrations themselves
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Diffusion in higher dimensions

Imagine a (thin) metal bar, being heated at one end

Assumptions

We can easily extend the idea to 2D – think of heating a plate of
metal

In 3D, think of a gas diffusing from a point in a room
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Diffusion
Now position x is a vector

u(x, t) is the temperature (in Kelvins)
I at point x ∈ [0, L]n along n-D space with sides L
I at time t ≥ 0

c = specific heat
= amount of heat needed to increase a unit mass by one degree

ρ = density (mass per unit length)

k = thermal conductivity

α = thermal diffusivity

α =
k

cρ

i.e., how easy it is for heat to diffuse across the medium

material α

copper 111
wood 0.082
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Diffusion in 2D

Generalise to 2D metal plate, temperature u(x , y , t)
Heat equation looks exactly the same:

∂u

∂t
= α∇2u

Laplacian becomes

∇2u =
∂2u

∂x2
+
∂2u

∂y2

Now the Laplacian encodes a direction, but it’s all encapsulated in the
same equation (which we could extend to 3D or more)
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Original
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At t = 0.04
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Numerical Solution by Difference Equations

3D arrays u(i , j , k)

Extend your derivatives to 2D equivalents, and iterate over 2 spatial
dimensions, but otherwise everything is the same.
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Takeaways

Diffusion is one of the underlying models for many physical processes
(often ones that build patterns)

It results in “smoothing” of an initial signal, and this can be used in
filtering and denoising patterns

We have implicit filtering going on in our heads!

We will come back to use diffusion again as part of a larger pattern
formation process, but next we will look at another model for diffusion
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Section 2

Analytic Solution of 1D Heat Equation
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Separation of variables

We are looking for a solution to the heat equation

∂u

∂t
= α∇2u

Assume the solution can be written

u(x , t) = X (x)T (t),

i.e., the parts corresponding to the two variables separate.
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Separation of variables
Assume u(x , t) = X (x)T (t)

∂u

∂t
= X (x)T ′(t)

∂2u

∂x2
= X ′′(x)T (t)

Substitute into the heat equation, and divide by αXT , and we get

1

α

T ′

T
=

X ′′

X

The LHS is a function of t only, and the RHS is a function of X only, so
they must be equal to a constant, call it −λ2, and then we can separate
the equation into

T ′ + λ2αT = 0 (1)

X ′′ + λ2X = 0 (2)
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Separation of variables

The solutions of

T ′ + λ2αT = 0 (3)

X ′′ + λ2X = 0 (4)

are

T (t) = t0e
−λ2αt

X (t) = A sinλx + B cosλx

We can work out t0, A, B, and λ from the initial and boundary conditions.
It turns out there could be more than one λn involved, and we can get all
of these from a Fourier transform of the initial state. So the final solution
is given by a set of exponentially decaying sin and cosine functions (hence
the connection to the previous lecture).
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Further reading I
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