Advanced Mathematical Perspectives 1
Lecture 11: Diffusion in 2D
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Fourier's analytical theory of heat (final form, 1822), devised
in the Galileo-Newton tradition of controlled observation plus
mathematics, is the ultimate source of much modern work in
the theory of functions of a real variable and in the critical

examination of the foundation of mathematics.
Eric Temple Bell, The Development of Mathe-

matics (1940) p. 165

| fart in your general direction.
French soldier, Monty Python and the Holy Grail
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Section 1

Diffusion in higher dimensions



Diffusion

Assume mixing takes time, even in a gas
Start with a concentration of some substance

It spreads, or diffuses through the medium
Its a model for

» various fluids and gases

> the spread of heat through a solid
» some problems in electronics

» spread of disease

o Key ideas

» no material is created or destroyed, only moved around
» rate of movement depends on concentrations themselves
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Diffusion in higher dimensions

Imagine a (thin) metal bar, being heated at one end

Assumptions

@ We can easily extend the idea to 2D — think of heating a plate of
metal

@ In 3D, think of a gas diffusing from a point in a room
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Diffusion

Now position x is a vector
@ u(x,t) is the temperature (in Kelvins)

» at point x € [0, L]" along n-D space with sides L
» attimet >0

@ ¢ = specific heat
= amount of heat needed to increase a unit mass by one degree
@ p = density (mass per unit length)
@ k = thermal conductivity
o « = thermal diffusivity
k
o= —
cp
i.e., how easy it is for heat to diffuse across the medium
material ‘ @
copper 111
wood 0.082
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Diffusion in 2D

Generalise to 2D metal plate, temperature u(x,y, t)
Heat equation looks exactly the same:

Ou 2
— =aVau
ot
Laplacian becomes
0%u N 0u
Ox2  Oy?
Now the Laplacian encodes a direction, but it's all encapsulated in the
same equation (which we could extend to 3D or more)

Vo =
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Numerical Solution by Difference Equations

e 3D arrays u(i,j, k)
@ Extend your derivatives to 2D equivalents, and iterate over 2 spatial
dimensions, but otherwise everything is the same.
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Takeaways

o Diffusion is one of the underlying models for many physical processes
(often ones that build patterns)

@ It results in “smoothing” of an initial signal, and this can be used in
filtering and denoising patterns

@ We have implicit filtering going on in our heads!

@ We will come back to use diffusion again as part of a larger pattern
formation process, but next we will look at another model for diffusion
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Section 2

Analytic Solution of 1D Heat Equation
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Separation of variables

We are looking for a solution to the heat equation

Ou 5
E—QVU

Assume the solution can be written
u(x, t) = X(x)T(t),

i.e., the parts corresponding to the two variables separate.
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Separation of variables
Assume u(x,t) = X(x) T(t)

ou ,
% = X(x)T'(t)
> u "
e X"(x)T(t)

Substitute into the heat equation, and divide by aXT, and we get
1 T/ X//
aT X
The LHS is a function of t only, and the RHS is a function of X only, so

they must be equal to a constant, call it —\2, and then we can separate
the equation into

T +XaT = 0 (1)
X"+ XX = 0 (2)
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Separation of variables

The solutions of

T +XaT = 0 (3)
X"+XX =0 (4)
are
T(t) = tee

X(t) = AsinAx+ Bcos Ax

We can work out ty, A, B, and A from the initial and boundary conditions.
It turns out there could be more than one )\, involved, and we can get all
of these from a Fourier transform of the initial state. So the final solution
is given by a set of exponentially decaying sin and cosine functions (hence
the connection to the previous lecture).
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Further reading |
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