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Probability is the very guide of life.
Leonard Mlodinow, The Drunkard’s Walk: How
Randomness Rules Our Lives

It takes only one drink to get me drunk. The trouble is, I
can’t remember if it’s the thirteenth or the fourteenth.

George Burns
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Section 1

The Drunkard’s Walk
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A Simple Random Walk

i-2 i-1 i i+1 i+2

1/2 1/2

Imagine moving around the integers using the following rule:
I starting at 0
I at each time step, toss a fair coin
I if heads, move left by 1
I if tails, move right by 1

This is a simple random walk

Questions:
I If we did this lots of times, what is the probability distribution across

the set of points?
I If we had barriers, how long would it take to hit them?
I How often does the walk cross over itself (particularly in 2D)?
I ...
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Random Walk Generalisations

We can generalise this in various ways

allow a biased coin

allow larger jumps

jump around on a 2D lattice of points

But for the moment let’s keep it simple
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Random Walk Mathematics

Take a series of random variables {Xi} for i = 1, 2, . . . defined by

Xi =

{
1, with probability 1/2,
−1, with probability 1/2.

Now we could describe the state of our random walk at time n as a
random variable Sn, defined by S0 = 0 and

Sn =
n∑

i=1

Xi

This is a very common type of random process, and often analysed.
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Bernoulli distribution

A Bernoulli random variable is X such that

Xi =

{
0, with probability 1− p,
1, with probability p.

Think of it as flipping a biased coin, with probability p of heads (or a
“success”)
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Binomial distribution

The Binomial random variable Y ∼ B(n, p) is what we get when we sum n
Bernoulli random variables. It has probability distribution:

Prob (Y = k) =

(
n

k

)
pk(1− p)n−k .

It has mean E [Y ] = np and variance Var (Y ) = np(1− p).

The random-walk random variable is almost the same as the Binomial,
except the components take values -1 and 1 instead of 0 and 1.
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Random Walk Distribution

The random-walk random variable is almost the same as the Binomial,
except the components take values -1 and 1 instead of 0 and 1.

The main difference is
I at time 1, we can only be in state -1 or 1
I at time 2, we can only be in state -2, 0, or 2

so at odd times = odd state, and even times = even state

So, combining insight from Binomial, and the above we get a
distribution following Pascal’s triangle, i.e.,

(n
k

)
k -4 -3 -2 -1 0 1 2 3 4

Prob (Sn = 0) 1
2Prob (Sn = 1) 1 1

22Prob (Sn = 2) 1 2 1
23Prob (Sn = 3) 1 3 3 1
24Prob (Sn = 4) 1 4 6 4 1
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Tricks for understanding Random Walk Distribution

Expectation is the average or mean

Expectation is a linear operator which means

E [A + B] = E [A] + E [B]

And so

E [Sn] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] = 0
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Tricks for understanding Random Walk Distribution

Variance is a measure of the spread of variability

Variance of independent random variables add

Var (A + B) = Var (A) + Var (B)

And so

Var (Sn) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi ) =
n∑

i=1

1 = n
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Tricks for understanding Random Walk Distribution

The Central Limit Theorem says that for any sum like this1

√
n

[
Sn
n
− µ

]
→ N(0, σ2),

where N(0, σ2) denotes the normal or Gaussian distribution with mean 0
and variance σ2 (where this is the variance of the Xi ).

Here, Xi has µ = 0 and σ2 = 1, so

Sn√
n
→ N(0, 1),

1There are some conditions, and we need to define the notion of limit for
probabilities more carefully.
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Galton Board

The Galton board or Quincunx demonstrates
the Central Limit Theorem
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Tricks for understanding Random Walk Distribution

These three together (or just the last) give us a pretty clear picture that
the distribution evolves towards a Gaussian (normal) distribution with well
understood parameters.
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Example
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Activities

Simulate and play with random walks

Start thinking more seriously about your project
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Further reading I

Paul C. Bressloff, Stochastic processes in cell biology, ch. Diffusion in Cells:
Random Walks and Brownian Motion, Springer, 2014,
http://www.springer.com/gp/book/9783319084879.

Sheldon Ross, Introduction to probability models, Academic Press, 2010.
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