Advanced Mathematical Perspectives 1

Lecture 13：Random Walks

Matthew Roughan
＜matthew．roughan＠adelaide．edu．au＞
www．maths．adelaide．edu．au／matthew．roughan／notes／AMP1／

School of Mathematical Sciences， University of Adelaide

Probability is the very guide of life.
Leonard Mlodinow, The Drunkard's Walk: How Randomness Rules Our Lives

It takes only one drink to get me drunk. The trouble is, I can't remember if it's the thirteenth or the fourteenth.

George Burns

Section 1

The Drunkard's Walk

A Simple Random Walk

- Imagine moving around the integers using the following rule:
- starting at 0
- at each time step, toss a fair coin
- if heads, move left by 1
- if tails, move right by 1

This is a simple random walk

- Questions:
- If we did this lots of times, what is the probability distribution across the set of points?
- If we had barriers, how long would it take to hit them?
- How often does the walk cross over itself (particularly in 2D)?
- ...

Random Walk Generalisations

We can generalise this in various ways

- allow a biased coin
- allow larger jumps
- jump around on a 2D lattice of points

But for the moment let's keep it simple

Random Walk Mathematics

Take a series of random variables $\left\{X_{i}\right\}$ for $i=1,2, \ldots$ defined by

$$
X_{i}=\left\{\begin{aligned}
1, & \text { with probability } 1 / 2 \\
-1, & \text { with probability } 1 / 2
\end{aligned}\right.
$$

Now we could describe the state of our random walk at time n as a random variable S_{n}, defined by $S_{0}=0$ and

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

This is a very common type of random process, and often analysed.

Bernoulli distribution

A Bernoulli random variable is X such that

$$
X_{i}= \begin{cases}0, & \text { with probability } 1-p \\ 1, & \text { with probability } p\end{cases}
$$

Think of it as flipping a biased coin, with probability p of heads (or a "success")

Binomial distribution

The Binomial random variable $Y \sim B(n, p)$ is what we get when we sum n Bernoulli random variables. It has probability distribution:

$$
\operatorname{Prob}(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

It has mean $\mathbb{E}[Y]=n p$ and variance $\operatorname{Var}(Y)=n p(1-p)$.
The random-walk random variable is almost the same as the Binomial, except the components take values -1 and 1 instead of 0 and 1 .

Random Walk Distribution

- The random-walk random variable is almost the same as the Binomial, except the components take values -1 and 1 instead of 0 and 1 .
- The main difference is
- at time 1 , we can only be in state -1 or 1
- at time 2 , we can only be in state $-2,0$, or 2
so at odd times $=$ odd state, and even times $=$ even state
- So, combining insight from Binomial, and the above we get a distribution following Pascal's triangle, i.e., $\binom{n}{k}$

k	-4	-3	-2	-1	0	1	2	3	4
$\operatorname{Prob}\left(S_{n}=0\right)$					1				
$2 \operatorname{Prob}\left(S_{n}=1\right)$				1		1			
$2^{2} \operatorname{Prob}\left(S_{n}=2\right)$			1		2		1		
$2^{3} \operatorname{Prob}\left(S_{n}=3\right)$		1		3		3		1	
$2^{4} \operatorname{Prob}\left(S_{n}=4\right)$	1		4		6		4		1

Tricks for understanding Random Walk Distribution

Expectation is the average or mean
Expectation is a linear operator which means

$$
\mathbb{E}[A+B]=\mathbb{E}[A]+\mathbb{E}[B]
$$

And so

$$
\mathbb{E}\left[S_{n}\right]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=0
$$

Tricks for understanding Random Walk Distribution

Variance is a measure of the spread of variability
Variance of independent random variables add

$$
\operatorname{Var}(A+B)=\operatorname{Var}(A)+\operatorname{Var}(B)
$$

And so

$$
\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{n} 1=n
$$

Tricks for understanding Random Walk Distribution

The Central Limit Theorem says that for any sum like this ${ }^{1}$

$$
\sqrt{n}\left[\frac{S_{n}}{n}-\mu\right] \rightarrow N\left(0, \sigma^{2}\right)
$$

where $N\left(0, \sigma^{2}\right)$ denotes the normal or Gaussian distribution with mean 0 and variance σ^{2} (where this is the variance of the X_{i}).

Here, X_{i} has $\mu=0$ and $\sigma^{2}=1$, so

$$
\frac{S_{n}}{\sqrt{n}} \rightarrow N(0,1)
$$

[^0]
Galton Board

The Galton board or Quincunx demonstrates the Central Limit Theorem

Tricks for understanding Random Walk Distribution

These three together (or just the last) give us a pretty clear picture that the distribution evolves towards a Gaussian (normal) distribution with well understood parameters.

Example

Activities

- Simulate and play with random walks
- Start thinking more seriously about your project

Further reading I

Paul C. Bressloff, Stochastic processes in cell biology, ch. Diffusion in Cells: Random Walks and Brownian Motion, Springer, 2014, http://www.springer.com/gp/book/9783319084879.
Sheldon Ross, Introduction to probability models, Academic Press, 2010.

[^0]: ${ }^{1}$ There are some conditions, and we need to define the notion of limit for probabilities more carefully.

