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The profound study of nature is the most fertile source of
mathematical discoveries.

Joseph Fourier (1768-1830)

’I’ll take spots, then,’ said the Leopard; ’but don’t make ’em
too vulgar-big. I wouldn’t look like Giraffe–not for ever so.’

How the leopard got his spots, Just So Stories,
Rudyard Kipling
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Section 1

Symmetry Breaking
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Real Patterns

Real patterns have periodicity
I periodic patterns aren’t perfectly symmetrical
I e.g., they have n-fold rotational symmetry, not arbitrary rotational

symmetry

Real patterns have some broken symmetries
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Real Patterns
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Skin/hair patterns

Patterns on mammals are usually from coloured hair
I colour from pigments: melanin (eumelanin and phaeomelanin)
I pigment from special cells: melanocytes

Pigments produced by melanocytes depend on presence/absence of
activator/inhibitor chemicals
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Buridan’s Ass

Ass = Donkey

Donkey is placed exactly between two precisely equal stacks of hay.

The donkey will go to the best or closest, but they are the same.

So it starves to death because it can’t decide which to go to.

Named after 14th century philosopher Jean Buridan, but idea goes back at
least to Aristotle 350 BC.
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Ex nihilo nihil fit: Nothing comes out of nothing

The idea underlying Buridan’s Ass

Take a system that has a particular symmetry

Assume the laws of physics are symmetric, and that the system
evolves under these laws

The system cannot “lose” the symmetry

But there are many cases that seem to contradict this.
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Symmetry breaking in nature

Most higher-life forms on our planet starts as a single spherical cell,
but end up with only with bilateral symmetry

Even on bilaterally symmetric animals, we see patterns that are not
symmetric, e.g., giraffe spots

A flower starts as an (almost) cylindrical stem, but then creates
petals, with only discrete rotational symmetry.

Primary question: how can symmetry break?

Secondary question: when the symmetry breaks, why does it do so in such
a controlled way, e.g., why are there usually the same number of petals?
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Section 2

Reaction-Diffusion Systems
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We’ve seen diffusion and reaction — now we put them together

2D surface covered with two or more reagents, and ui (t, x , y) is the
concentration of

I reagent i
I at time t
I in location (x , y)

Mixing only by diffusion

Reactions are only local, i.e., they depend on the concentrations at a
point, not anywhere else

Individually, these are fairly simple, but together they can generate very
interesting behaviour
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Reaction-diffusion equation

∂u1
∂t

= r1(u1, u2) + α1∇2u1

∂u2
∂t

= r2(u1, u2) + α2∇2u2

the terms ri (u1, u2) are reactions
I implicitly they are dependent only on local concentrations
I if ri = 0 then this is just a diffusion system

the terms αi∇2ui are diffusion terms
I they are independent of reactions
I if αi = 0 then it is just a reaction system
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Examples: [Tur52]

Turing’s first example of morphogenesis

Assume we have a set of N cells arranged in a circle

Discrete space, 1D version of the above

Turing analysed the stability of the linearised version of the system and
showed that adding diffusion could make a stable reaction system into an
unstable system.

this is counter-intuitive because we usually think of diffusion
(smoothing) as increasing stability

result is demonstrated by finding the solution in terms of overlapping
sinusoids

I for certain parameters we get solutions in terms of sinusoids, so circular
symmetry is broken in favour of n-fold rotational symmetry

I e.g., petal formation on a flower stem
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Section 3

Pattern Formation and Instability
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Schnakenberg system

∂u1
∂t

= γ
(
a− u1 + u21u2

)
+ α1∇2u1

∂u2
∂t

= γ
(
b − u21u2

)
+ α2∇2u2

u1 is an activator
I autocatalytic, i.e., stimulates production of itself
I slow diffusion (so short-range effect)
I triggers “colour” in pattern

u2 is an inhibitor
I reduces production of u1 (and itself)
I fast diffusion (long-range effect)

α2 > α1

Start with noise around equilibrium

u∗1 = a + b, u∗2 =
b

(a + b)2
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Example: 1D
α1 = 1.0, α2 = 4.8, γ = 1000, a = −0.55, b = 1.9
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Note periodic pattern, despite noise input
I shape of pattern isn’t affected by noise (only start point)
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Example: 2D

α1 = 1.0, α2 = 4.8, γ = 100, a = −0.55, b = 1.9
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Output has been thresholded to highlight it

Made up of several periodic functions in different directions, so looks
almost random

Size matters: long thin grid results in stripes instead of spots
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Example: other examples

https://www.chemistryworld.com/feature/turing-patterns/

4991.article
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Example: other examples

[KM10]
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Takeaways

Instability can lead to minuscule natural variations (noise) being
enhanced, leading to apparent symmetry breaking

The really interesting thing is that this can happen in a controlled
way such that the resulting pattern is almost independent of the input
noise

The models above make detailed assumptions about processes, that
might not be real, but the underlying idea is very deep
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Section 4

Extras
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Scale

Scale is important here
I determines the relative size of parameters
I patterns form at some stage in foetal development, and size/shape of

foetus at that point is important to eventual patterns
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Links

https://www.theguardian.com/science/

punctuated-equilibrium/2010/oct/20/6

https:

//www.popmath.org.uk/rpamaths/rpampages/leopard.html

https://mosaicscience.com/story/

how-zebra-got-its-stripes-alan-turing/

https://thatsmaths.com/2013/04/25/spots-and-stripes/

https://naiadseye.wordpress.com/2015/08/13/

how-sea-shell-patterns-look-the-way-they-do/

http://homepage.univie.ac.at/marie-therese.wolfram/

teaching.html

https://www.chemistryworld.com/feature/turing-patterns/

4991.article
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Further reading I

Shigeru Kondo and Takashi Miura, Reaction-diffusion model as a framework for
understanding biological pattern formation, Science 329 (2010), no. 5999,
1616–1620.

Boyce Tsang, Patterns in reaction diffusion system, 2011, guava.physics.uiuc.
edu/~nigel/courses/569/Essays_Fall2011/Files/tsang.pdf.

A.M. Turing, The chemical basis for morphogenesis, Philosophical Transactions of
the Royal Society of London B 237 (1952), 37–72,
www.dna.caltech.edu/courses/cs191/paperscs191/turing.pdf.
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