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I used to feel guilty in Cambridge that I spent all day playing
games, while I was supposed to be doing mathematics. Then,
when I discovered surreal numbers, I realized that playing
games IS math.

John Horton Conway

All the wonders of our universe can in effect be captured by
simple rules, yet ... there can be no way to know all the
consequences of these rules, except in effect just to watch
and see how they unfold.

Stephen Wolfram

“And Wolfram knows about cellular automata? Oh, my good-
ness, yes,” said Anna. “He wrote a book you could kill a man
with ...”

Robert J. Sawyer
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Section 1

Complexity
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What is complexity?

There are lots of definitions of complexity. I would like to distinguish
between complex and complicated

Complicated: lots of moving parts, but governed by known,
predictable laws.
A gas is complicated – its has many, many molecules, and their detailed
interactions are very complicated, but we can describe it simple using statistical
representations. The math might be sophisticated, and the problem hard in many
ways, but we can do good predictions. A clock is another good example.

Complex: intrinsically hard to understand or predict.
Human inter-personal interactions are complex. While aspects might be described
by mathematical laws, these are always gross approximations, and usually proved
by the exceptions. And prediction is hard.

Sometimes the difference might be how smart we are, but there seems to
be a difference in category not just quantity.

We are interested in complex systems.
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Ex nihilo nihil fit: Nothing comes out of nothing

Ex nihilo nihil fit: Nothing comes out of nothing

therefore

Complexity must come from complexity????

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)AMP1 5 / 38



Section 2

Conway’s Game of Life

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)AMP1 6 / 38



Conway’s Game of Life [Gar70]

Define a grid of square “cells”
I each is “alive” or “dead”

At each time step, we count the number of each cell’s neighbours
that are alive, and

1 any live cell with fewer than 2 live neighbours dies
2 any live cell with more than three neighbours dies
3 any live cell with 2 or 3 live neighbours lives on
4 any dead cell with exactly three live neighbours becomes alive, and

otherwise stays dead
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Mathematical description

x
(t)
ij =

{
1, if cell (i , j) is alive at time t
0, otherwise

Neighbourhood of (i , j) is a set, which for Conway’s game is defined as

Ni ,j =
{

(i − 1, j − 1), (i − 1, j), (i − 1, j + 1),

(i , j − 1), (i , j + 1),

(i + 1, j − 1), (i + 1, j), (i + 1, j + 1)
}

The next step is based on the number of alive neighbours given by

n
(t)
ij =

∑
(k,m)∈Ni,j

x
(t)
km
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Mathematical description
Rules:

If x
(t)
ij = 1, i.e., the cell is alive

x
(t+1)
ij =

{
1, if T alive

min ≤ n
(t)
ij ≤ T alive

max

0, otherwise

If x
(t)
ij = 0, i.e., the cell is dead

x
(t+1)
ij =

{
1, if T dead

min ≤ n
(t)
ij ≤ T dead

max

0, otherwise

In Conway’s game

T alive
min = 2

T alive
max = 3

T dead
min = 3

T dead
max = 3
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Example

Time t Time t+1
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Example: Stable Patterns

Block Beehive Tub Boat
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Example: Simple Oscillators (period 2)

Blinker Toad Beacon
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Example: Lightweight Spaceship

This pattern is a simple glider or spaceship
Time t Time t+1 Time t+2 Time t+3

I so the patterns repeats, but shifted to the left by 2 cells

Let’s have a look at Golly
http://golly.sourceforge.net/

http://www.conwaylife.com/w/index.php?title=Spaceship
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Richness of the space

Period n oscillators

Larger spaceship

Glider guns

Puffers (like spaceships but which leave debris)

Replicators
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GoL Example: Golden ratio ϕ

Large-scale view (you can’t see the individual cells here) generated with
Golly and http://pentadecathlon.com/lifeNews/2011/01/phi.mc,
e.g., see http://pentadecathlon.com/lifeNews/2011/01/phi_and_

pi_calculators.html

There is a similar one for π, e.g., see
http://pentadecathlon.com/lifeNews/2011/01/pi.mc
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GoL = Turing Complete

Definition

A computer programming language (or system, or automata) is Turing
complete if it can be used to simulate any Turing machine.

If so, then it can compute anything computable by a real-world computer.

The GoL is Turing complete (assuming the grid is infinite1).

Glider’s can represent a stream of bits

Logic gates can be built from intersections of streams

In fact, it’s been built [Ren11]

1This is a limitation of all real-world computers.
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Mathematics, Life and Art

The GoL inspired

musician Brian Eno to create generative music
https://www.youtube.com/watch?v=UqzVSvqXJYg

https://www.youtube.com/watch?v=IGUEVXqvCwM

http:

//longnow.org/seminars/02006/jun/26/playing-with-time/

Will Wright – creator of Sim City

Cellular Automata in MIDI music [BELM04]

Robert Bosch http://www.dominoartwork.com/life.html

Francis Bitonti fashion designer
https://www.wired.com/2014/10/

3-d-printed-shoes-generated-using-conways-game-life/

BTW: Clock of the long now http://longnow.org/clock/
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Generalisations

Konrad Zuse proposed that the physical laws of the universe (at the lowest
level) are some variant of cellular automata, but not Conway’s. So what
can we tweak?

Neighbourhood — e.g., could be vertical and horizontal, or include
diagonals, or could include cells more than one step away.

Shape of grid could be based on any tessellation — e.g., could be
hexagonal.

Grid can be finite or infinite, or toroidal (periodic), or dynamically
growing

1D or 2D or 3D or even non-Euclidean spaces

Number of states, not just alive or dead

The most important bit (maybe) the “RULES”
I counts (for alive and dead)
I symmetry

Are there some universal properties in all of these variants?
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Section 3

Wolfram and Rule 30
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Wolfram studied a set of cellular automata (in 1D)
1 In 1D, rules are given by their pattern

I the rule relates three parents to the child
I all based on binary codes

Rule 0:

0 0 0 0 0 0 0 0

2 Each cell has 2 neighbours + its own state, so there are 3 states, each
with two possibilities so 23 = 8 possible states (see above), and hence
28 = 256 possible rules.
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Examples
Start from a row with a single alive cell
Each row is one step in time

Rule 0:

0 0 0 0 0 0 0 0
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Examples
Start from a row with a single alive cell
Each row is one step in time

Rule 90:

0 1 0 1 1 0 1 0
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Examples
Start from a row with a single alive cell
Each row is one step in time

Rule 90:

0 1 0 1 1 0 1 0
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Wolfram grouped the rules into classes by the criteria:

1 Nearly all initial patterns evolve quickly into a stable, homogeneous
state.

2 Nearly all initial patterns evolve quickly into stable or oscillating
structures.

3 Nearly all initial patterns evolve in a pseudo-random or chaotic
manner. Any stable structures that appear are quickly destroyed by
the surrounding noise.

4 Nearly all initial patterns evolve into structures that interact in
complex and interesting ways, with the formation of local structures
that are able to survive for long periods of time.
Class 2 type stable or oscillating structures may be the eventual
outcome, but the number of steps required to reach this state may be
very large, even when the initial pattern is relatively simple.

Conway’s Game of Life is in the last class. Wolfram’s most famous
example he called Rule 30, and is also in this class.
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Effect of Initial State and Locality

1 Any randomness in the initial pattern disappears.

2 Some of the randomness in the initial pattern may filter out, but
some remains. However, local changes to the initial pattern tend to
remain local.

3 Local changes to the initial pattern tend to spread indefinitely.

4 Local changes to the initial pattern may spread indefinitely.
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Example: Class 1: e.g., Rules 250 and 254

Rule 250:

1 1 1 1 1 0 1 0

Start with a single alive cell
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Example: Class 1: e.g., Rules 250 and 254

Rule 250:

1 1 1 1 1 0 1 0

Start with random cells
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Example: Class 2: e.g., Rules 4 and 108

Rule 108:

0 1 1 0 1 1 0 0

Start with a single alive cell
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Example: Class 2: e.g., Rules 4 and 108

Rule 108:

0 1 1 0 1 1 0 0

Start with random cells
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Example: Class 3: e.g., Rules 30 and 90

Rule 30:

0 0 0 1 1 1 1 0

Start with a single alive cell
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Example: Class 3: e.g., Rules 30 and 90

Rule 30:

0 0 0 1 1 1 1 0

Start with random cells
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Example: Class 4: Rule 54 and 110

Rule 110:

0 1 1 0 1 1 1 0

Start with a single alive cell
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Example: Class 4: Rule 54 and 110

Rule 110:

0 1 1 0 1 1 1 0

Start with random cells
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Connections

Pseudo-Random Numbers can be seen as a special type of Class 3
cellular automata

I the pattern is deterministic, but so complicated the only way to predict
it is to run the automata, so we can treat its outcome as almost
random

Self-organisation
I some systems seem to “self-organise,” which seems to be a

contradiction with the laws of thermodynamics (specifically the second,
i.e., disorder increases)

I a parallel is seen in life

Computation
I links to ideas of Turing complete computer systems
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Wolfram’s ideas [Wol02]

Wolfram’s ideas (and others in this area) parallel and motivate some of the
themese that run through this course

Relationships between discrete and continuous models

Complexity out of simple rules

Apparent randomness, despite simple structure

The “edge of chaos” – natural patterns often form in between the
extremes of boring regularity and complete randomness
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Mathematica and α

BTW Wolfram α

Came out of Mathematica (the thing Wolfram is best known for)

Symbolic Manipulation + Computer Algebra

Lots of alternatives now
https://en.wikipedia.org/wiki/List_of_computer_algebra_

systems

You should try, at least, Wolfram α
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Section 4

Swarms and murmurations
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How far can we take the idea of simple, local rules producing
interesting complexity?

Do we see this type of thing in nature?

How does it fit into the scheme of models we have already looked at?

Discrete Continuous

Random
(Stochastic)

Random Walk(s)

???

Deterministic
Difference approximation,
Cellular automata1

Reaction-
Diffusion

Table: Model classes.

1 - Note: difference approximations are built on a discrete grid, but have
continuous state, whereas cellular automata have a discrete state as well.
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A murmuration of swallows

https://www.youtube.com/watch?v=V4f_1_r80RY

A murmuration is the collective name for a flock of starlings, the term
probably derived from the sound it generates

How do flocks of birds form large patterns as they fly?
I no-one is planning it
I there is no central authority to tell them what to do

Other examples: https://www.youtube.com/watch?v=NREmtGhIHew

https://www.youtube.com/watch?v=QOGCSBh3kmM
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Ants and Swarms

The Ants toil for no Master
Sufficient to their Need
The daily commerce of the Nest
The storage of their Seed
They meet-and exchange Messages-
But none to none-bows down
They-like God’s thoughts-speak to each to each-
Without-external-crown

A.S.Byatt, Possession
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Ants and Swarms [Gor99]

Why do ants bring food home to the nest walk in (somewhat)
straight lines?

I individual ants are stupid
I they can’t see very far
I they don’t know Euclidean geometry

How do swarms insects create hives?
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Fish and Schools

How do fish form into schools

How is complex behaviour orchestrated in the school

https://en.wikipedia.org/wiki/Shoaling_and_schooling
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No answers today – go away and find out.
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Takeaways

Complexity can arise from simple rules

Long-range structure can arise from local rules

Tiny changes can result in big differences in later states, so we can
only see final outcome by tracing the system forward

I more on this later
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Section 5

Extras
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Links

http://bactra.org/notebooks/cellular-automata.html

https://plato.stanford.edu/entries/cellular-automata/

index.html

https://plato.stanford.edu/entries/cellular-automata/

supplement.html

http://golly.sourceforge.net/

https://www.youtube.com/watch?v=UqzVSvqXJYg

http://www.math.cornell.edu/~lipa/mec/lesson6.html

http://pentadecathlon.com/

http://grantmuller.com/projects/game-of-life/

http://www.conwaylife.com/wiki/Conways_Game_of_Life

http://www.radicaleye.com/lifepage/

http://www.ibiblio.org/lifepatterns/

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)AMP1 40 / 38

http://bactra.org/notebooks/cellular-automata.html
https://plato.stanford.edu/entries/cellular-automata/index.html
https://plato.stanford.edu/entries/cellular-automata/index.html
https://plato.stanford.edu/entries/cellular-automata/supplement.html
https://plato.stanford.edu/entries/cellular-automata/supplement.html
http://golly.sourceforge.net/
https://www.youtube.com/watch?v=UqzVSvqXJYg
http://www.math.cornell.edu/~lipa/mec/lesson6.html
http://pentadecathlon.com/
http://grantmuller.com/projects/game-of-life/
http://www.conwaylife.com/wiki/Conways_Game_of_Life
http://www.radicaleye.com/lifepage/
http://www.ibiblio.org/lifepatterns/


Further reading I

Dave Burraston, Ernest Edmonds, Dan Livingstone, and Eduardo Reck Miranda,
Cellular automata in MIDI based computer music, ICMC, 2004.

Martin Gardner, Mathematical games: The fantastic combinations of John
Conway’s new solitaire game ”life”, Scientific American 223 (1970), 120–123.

Deborah Gordon, Ants at work: How an insect society is organized, The Free Press,
1999.

P. Rendell, A universal Turing machine in Conway’s Game of Life, International
Conference on High Performance Computing Simulation, July 2011, pp. 764–772.

Stephen Wolfram, A new kind of science, Wolfram Media, 2002.
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