Communications Network Design Class Exercise 2 Solutions

Matthew Roughan
matthew.roughan@adelaide.edu.au

1. 5 marks The cost function is $C(\mathbf{f})=\sum_{e \in L} \alpha_{e} f_{e}+\beta_{e}$.

Start with direct routing. The cost of the network are shown in Figure 2 (a). Total cost is 28 units.

Figure 1: Minoux's greedy algorithm.

Iteration 1: Calculate the change in cost if each route is removed:

$$
\begin{aligned}
& \Delta_{12}=\left(\alpha_{13}+\alpha_{32}-\alpha_{12}\right) f_{12}-\beta_{12}=(1+1-1) \times 1-1=0 \\
& \Delta_{13}=\left(\alpha_{14}+\alpha_{34}-\alpha_{13}\right) f_{13}-\beta_{13}=(1+1-1) \times 4-4=0 \\
& \Delta_{14}=\left(\alpha_{12}+\alpha_{42}-\alpha_{14}\right) f_{14}-\beta_{14}=(1+1-1) \times 0-6=-6 \\
& \Delta_{23}=\left(\alpha_{24}+\alpha_{34}-\alpha_{23}\right) f_{23}-\beta_{23}=(1+1-1) \times 1-3=-2 \\
& \Delta_{24}=\left(\alpha_{12}+\alpha_{14}-\alpha_{24}\right) f_{24}-\beta_{24}=(1+1-1) \times 4-2=2 \\
& \Delta_{34}=\left(\alpha_{23}+\alpha_{24}-\alpha_{34}\right) f_{34}-\beta_{34}=(1+1-1) \times 1-1=0
\end{aligned}
$$

The minimum occurs for link $(1,4)$, with a value of $-6<0$, so we remove this link, and the new cost will be $28-6=22$. Reroute the traffic from link $(1,4)$ along path $1-2-4$ (Note there are two alternative paths here, the other is $1-3-4$). The new network loads are shown in Figure $2(b)$. Note they are still just the direct routing loads, because there was no direct path traffic on link $1-4$.
Iteration 2: Calculate the change in cost if each route is removed:

$$
\begin{aligned}
& \Delta_{12}=\left(\alpha_{13}+\alpha_{32}-\alpha_{12}\right) f_{12}-\beta_{12}=(1+1-1) \times 1-1=0 \\
& \Delta_{13}=\left(\alpha_{14}+\alpha_{34}-\alpha_{13}\right) f_{13}-\beta_{13}=(1+1-1) \times 4-4=0 \\
& \Delta_{23}=\left(\alpha_{24}+\alpha_{34}-\alpha_{23}\right) f_{23}-\beta_{23}=(1+1-1) \times 1-3=-2 \\
& \Delta_{24}=\left(\alpha_{12}+\alpha_{14}-\alpha_{24}\right) f_{24}-\beta_{24}=(1+1-1) \times 4-2=2 \\
& \Delta_{34}=\left(\alpha_{23}+\alpha_{24}-\alpha_{34}\right) f_{34}-\beta_{34}=(1+1-1) \times 1-1=0
\end{aligned}
$$

The minimum occurs for link $(2,3)$, with a value of $-2<0$, so we remove this link, and the new cost will be $22-2=20$. Reroute the traffic from link $(2,3)$ along path $2-4-3$ (note that there are actually two possible paths we might choose, the alternative is $2-1-3$). The new network loads are shown in Figure 2 (c).

Iteration 3: Calculate the change in cost if each route is removed:

$$
\begin{aligned}
& \Delta_{12}=\left(\alpha_{13}+\alpha_{34}+\alpha_{41}-\alpha_{12}\right) f_{12}-\beta_{12}=(1+1+1-1) \times 1-1=1 \\
& \Delta_{13}=\left(\alpha_{12}+\alpha_{24}+\alpha_{43}-\alpha_{13}\right) f_{13}-\beta_{13}=(1+1+1-1) \times 4-4=4 \\
& \Delta_{24}=\left(\alpha_{21}+\alpha_{13}+\alpha_{34}-\alpha_{24}\right) f_{24}-\beta_{24}=(1+1+1-1) \times 5-2=8 \\
& \Delta_{34}=\left(\alpha_{31}+\alpha_{12}+\alpha_{24}-\alpha_{34}\right) f_{34}-\beta_{34}=(1+1+1-1) \times 2-1=3
\end{aligned}
$$

All are positive, so the final network is the network shown in Figure 2 (c), with cost 20. This shows a heuristic solution to find the minimum cost solutoin. Because it is a heuristic, we do not know if it is the true minimum without doing more work (e.g. Branch and Bound).

Note alterantive Δ_{e} given alternative route choice at iteration 2 is

$$
\begin{aligned}
& \Delta_{12}=3 \\
& \Delta_{13}=6 \\
& \Delta_{24}=6 \\
& \Delta_{34}=1
\end{aligned}
$$

2. Apply Minoux's greedy algorithm to the networkshown in Figure 3 costs, and traffic as shown in the figure. Show all working! Note that for your convenience the costs and traffic are also defined in the matrices below.

Figure 2: A network and associated costs and traffic.

$$
\alpha=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 1 \\
1 & 0 & 3 & 1 & 2 \\
2 & 3 & 0 & 3 & 1 \\
3 & 1 & 3 & 0 & 2 \\
1 & 2 & 1 & 2 & 0
\end{array}\right), \quad \beta=\left(\begin{array}{ccccc}
0 & 1 & 4 & 6 & 1 \\
1 & 0 & 3 & 2 & 1 \\
4 & 3 & 0 & 1 & 2 \\
6 & 2 & 1 & 0 & 1 \\
1 & 1 & 2 & 1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ccccc}
0 & 1 & 4 & 0 & 1 \\
1 & 0 & 1 & 4 & 2 \\
4 & 1 & 0 & 1 & 1 \\
0 & 4 & 1 & 0 & 2 \\
1 & 2 & 1 & 2 & 0
\end{array}\right) .
$$

Iteration 1, current cost $=51.0$

$$
\begin{aligned}
\Delta_{1,2} & =1.00 \\
\Delta_{1,3} & =-4.00 \\
\Delta_{1,4} & =-6.00 \\
\Delta_{1,5} & =1.00 \\
\Delta_{2,3} & =-3.00 \\
\Delta_{2,4} & =10.00 \\
\Delta_{2,5} & =-1.00 \\
\Delta_{3,4} & =-1.00
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{3,5}=0.00 \\
& \Delta_{4,5}=1.00
\end{aligned}
$$

The minimum $\Delta=-6.0$, for link $(1,4)$ The corresponding route is 4-2-1
The resulting links loads f are

$$
f=\left(\begin{array}{lllll}
0.0 & 1.0 & 4.0 & 0.0 & 1.0 \\
1.0 & 0.0 & 1.0 & 4.0 & 2.0 \\
4.0 & 1.0 & 0.0 & 1.0 & 1.0 \\
0.0 & 4.0 & 1.0 & 0.0 & 2.0 \\
1.0 & 2.0 & 1.0 & 2.0 & 0.0
\end{array}\right)
$$

Iteration 2, current cost $=45.0$

$$
\begin{aligned}
\Delta_{1,2} & =1.00 \\
\Delta_{1,3} & =-4.00 \\
\Delta_{1,5} & =1.00 \\
\Delta_{2,3} & =-3.00 \\
\Delta_{2,4} & =10.00 \\
\Delta_{2,5} & =-1.00 \\
\Delta_{3,4} & =-1.00 \\
\Delta_{3,5} & =0.00 \\
\Delta_{4,5} & =1.00
\end{aligned}
$$

The minimum $\Delta=-4.0$, for link $(1,3)$
The corresponding route is 3-5-1
The resulting links loads f are

$$
f=\left(\begin{array}{lllll}
0.0 & 1.0 & 0.0 & 0.0 & 5.0 \\
1.0 & 0.0 & 1.0 & 4.0 & 2.0 \\
0.0 & 1.0 & 0.0 & 1.0 & 5.0 \\
0.0 & 4.0 & 1.0 & 0.0 & 2.0 \\
5.0 & 2.0 & 5.0 & 2.0 & 0.0
\end{array}\right)
$$

Iteration 3, current cost $=41.0$

$$
\begin{aligned}
\Delta_{1,2} & =1.00 \\
\Delta_{1,5} & =9.00 \\
\Delta_{2,3} & =-3.00 \\
\Delta_{2,4} & =10.00 \\
\Delta_{2,5} & =-1.00 \\
\Delta_{3,4} & =-1.00 \\
\Delta_{3,5} & =18.00 \\
\Delta_{4,5} & =1.00
\end{aligned}
$$

The minimum $\Delta=-3.0$, for link $(2,3)$
The corresponding route is 3-5-2

The resulting links loads f are

$$
f=\left(\begin{array}{lllll}
0.0 & 1.0 & 0.0 & 0.0 & 5.0 \\
1.0 & 0.0 & 0.0 & 4.0 & 3.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 6.0 \\
0.0 & 4.0 & 1.0 & 0.0 & 2.0 \\
5.0 & 3.0 & 6.0 & 2.0 & 0.0
\end{array}\right)
$$

Iteration 4, current cost $=38.0$

$$
\begin{aligned}
\Delta_{1,2} & =1.00 \\
\Delta_{1,5} & =9.00 \\
\Delta_{2,4} & =10.00 \\
\Delta_{2,5} & =-1.00 \\
\Delta_{3,4} & =-1.00 \\
\Delta_{3,5} & =22.00 \\
\Delta_{4,5} & =1.00
\end{aligned}
$$

The minimum $\Delta=-1.0$, for link $(3,4)$
The corresponding route is $4-5-3$
The resulting links loads f are

$$
f=\left(\begin{array}{lllll}
0.0 & 1.0 & 0.0 & 0.0 & 5.0 \\
1.0 & 0.0 & 0.0 & 4.0 & 3.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 7.0 \\
0.0 & 4.0 & 0.0 & 0.0 & 3.0 \\
5.0 & 3.0 & 7.0 & 3.0 & 0.0
\end{array}\right)
$$

Iteration 5, current cost $=37.0$

$$
\Delta_{1,2}=1.00
$$

$$
\Delta_{1,5}=9.00
$$

$$
\Delta_{2,4}=10.00
$$

$$
\Delta_{2,5}=-1.00
$$

$$
\Delta_{3,5}=\operatorname{Inf}
$$

$$
\Delta_{4,5}=2.00
$$

The minimum $\Delta=-1.0$, for link $(2,5)$
The corresponding route is 5-1-2
The resulting links loads f are

$$
f=\left(\begin{array}{lllll}
0.0 & 4.0 & 0.0 & 0.0 & 8.0 \\
4.0 & 0.0 & 0.0 & 4.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 7.0 \\
0.0 & 4.0 & 0.0 & 0.0 & 3.0 \\
8.0 & 0.0 & 7.0 & 3.0 & 0.0
\end{array}\right)
$$

Iteration 6, current cost $=36.0$

$$
\Delta_{1,2}=11.00
$$

$$
\begin{aligned}
\Delta_{1,5} & =23.00 \\
\Delta_{2,4} & =10.00 \\
\Delta_{3,5} & =\text { Inf } \\
\Delta_{4,5} & =2.00
\end{aligned}
$$

The minimum $\Delta=0.0 \geq 0$ so STOP

Final Solution: Cost $=36$

$$
\begin{gathered}
\text { connectivity }=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0
\end{array}\right) \\
f=\left(\begin{array}{lllll}
0 & 4 & 0 & 0 & 8 \\
4 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 7 \\
0 & 4 & 0 & 0 & 3 \\
8 & 0 & 7 & 3 & 0
\end{array}\right)
\end{gathered}
$$

Figure 3: Final network for part 2.

In both cases the optimal solution is found, but this is not guaranteed by the algorithm.

