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Network Optimization:
Goals and Constraints

What are the typical optimization goals (e.g., cost,
performance, reliability) for network operators? Where

are the costs in networks? What are the constraints
(technological, and non-tech.) they operate under?
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Lecture goals/outline

m Understand what optimization means

m optimization goals
e.g. reduce cost
e.g. improve cost or reliability

m optimization constraints
technological, geographic, political, ...

m think about these in a real context

m e.g. what are the costs?
e.g. what is a router

m e.g. what data do we need?

m references: for more details on Routers see Packet
Switch Architectures - I, N. McKeown, B. Prabhakar

http://ww. st anford. edu/ cl ass/ ee384x/ syl | abus. ht m
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Network Optimization Goals

m costs (usually assume equipment costs are large)
m performance (minimize delays, or latency)

m survivability
® hard to write as an optimization problem

m heuristic approach

distributed network
redundancy
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Cost in networking

m capital
m equipment (cables, switches, ...)
H premises
+ land that cables run along (right of ways)

m operations
m exclude sales and marketing, management, R&D
doesn't depend on network design
m salaries of network administrators
repairs and upgrades
design
m power

m transit (from upstream providers)
fixed
traffic based costs

Arguments about which costs are biggest
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Equipment costs

Often assumed to dominate

m fixed node costs
m cost of a router - often assumed small
m need to include premises, installation, etc.

m fixed link costs
m constant component
m BW component
higher bandwidth links cost more

m distance costs
m straight distance cost

m BW x distance cost
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Link costs

Linear model: cost of a link

Cost = k+ar 4+ pd+yrd
where

r = link capacity
d = link distance

m the parameters k,a, 3,y are constants.
m offen some terms might be close to zero so ignore

m some terms are out of our control, so we ighore
these, or push them into constants
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Simple Example Problem

Lets consider the problem of business that wants to
connect up two locations with a 10 Mbps link. What can
they do:
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Simple Example Problem

Lets consider the problem of business that wants to
connect up two locations with a 10 Mbps link. What can
they do:

Private
line
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Simple Example Problem

Lets consider the problem of business that wants to
connect up two locations with a 10 Mbps link. What can
they do:

Virtual Private
Network (VPN)
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Simple Example Problem

We have two possible solutions:

m private line

m |lease or build whole line
m cost depends on distance: C = kyivate+ Bprivated

= VPN

m pay for access to network at each end, but not
for the network

m no distance dependence: Bypy ~ 0

m decision: use private line if

kprivate"‘ Bprivated < 2kVPN
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The "constants”

Assume the linear model, how would you work out k,a, 3,y

m 3 and yarise from the costs of building a links.
m (3 are the fixed costs: right-of-way, digging
cables in, i.e., things we need regardless of how
much capacity we use.

m y reflects capacity related costs: e.g., in the old
days, if you wanted two links, you needed two
cables. Today, this might reflect the number of
A (wavelengths) you use on a WDM system.

m in reality, we often purchase such links from a
physical layer network provider. They pass on a
range of their costs through a pricing model that
determines 3 and .
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The "constants”

Assume the linear model, how would you work out k,a, 3,y

m o and k represent the non-distance dependent costs
of a link. These are usually associated with end
equipment, for instance the WDM multiplexers, and
line cards at the routers that terminate the link:

m k is non-capacity dependent costs: cost of
getting someone to install a line card, and spend
time configuring the router.

m o is capacity related term: higher speed line
cards usually cost more.

To understand some of this ferminology we have to
understand more about what a router is.

Communications Network Design: lecture 04 — p.11/39



What is a router?

A Juniper router in use.
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Router Architecture

Common modern architecture

data plane

line cards

control plane

/ backplane
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Courtesy of AARNET

Procket Chassis

Chassis
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Router Architecture

Less efficient software router

CPU RAM
Other PC routing routing table
components header update packet
packet class. buffering

PCI bus

NIC NIC NIC NIC
packets packets

NIC = Network Interface Card
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Router Architecture

High perf. architecture (input and output queueing)
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Router Architecture

High perf. architecture (input and output queueing)

switching fabric
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Per packet processing

In an IP Router

m lookup packet destination in forwarding table
= up to 150,000 entries (today)

m update header (e.g. checksum, and TTL)
m send packet to outgoing port
m buffer packet along the way
For a 10 Gbps line
m small 40 byte packets
m about 30 million packets per second
m you have ~30ns per packet
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Actiwve BGF entries (FIE)

BGP routing table size
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Expensive bits

m forwarding table can be large
= up to 150,000 entries per line card
m lookup in ~30ns for 10 Gbps line
m need fast memory

m buffers can be large
m 0.2 seconds per line card (rule of thumb)
m 10 Gbps line = 250 MB memory (on in and out)
m need fast memory (in + out in ~30ns)

m backplane must be faster than line cards
m N fimes line rate speedup (N linecards)
® to guarantee non-blocking switch fabric
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Router costs

m chassis
m one time cost per router

m but depends which chassis

m large (more expensive) chassis fits more line
cards

m |ine card
® number of ports

m speed of ports

m Cisco 12000 Series examples
Eight-Port Fast Ethernet Line Card
Router Gigabit Ethernet Line Card
Three-Port Gigabit Ethernet Line Card
10-Port Gigabit Ethernet Line Card
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Link costs alternatives

m distance component of physical link

m wired: cost of fibre, amplifiers/repeaters,
digging, right of way

m wireless: (e.g., free-space optics) free over
short distances

m |ogical link (VPN-like networks)

m (simplified) cost depend on capacity, but not
distance
= may depend on actual traffic volume

m satellites

m big companies often vertically integrated
m internal sales of bandwidth between divisions
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Linear model: what's it good for?

m is a linear model of costs good?
m not really

m in terms of costs, this is a discrete problem
m but its foo complicated

m hard to get exact pricing info anyway
pricing of ten depends on size of order, or
internal company politics

m we will often treat it as linear (continuous)
B as an approximation

m note that a major source of inefficiency is in the

discrete nature of bandwidths, and router
capabilities
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Optimizing for Latency

Another goal for optimization is to maximize network
performance.

m network performance often measured by latency

m latency is the delay of a packet crossing the
network

m most often we are concerned with average latency
m over all paths through the network
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Optimizing for Latency

Types of delay
m propagation:
m propagation delay directly related to distance
B queueing:
B queueing is caused by ftransient congestion
H processing:
m packet processing time (address lookup, and
header update)
= fixed per hop
® fransmission:

m time to tranmit packet on the line
= packet size / line rate
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Different scenarios

m ARPANET low speed links (56 kbps), and slow

processors (IMPs)
® propagation: coast-to-coast in US ~ 30ms
® transmission: 1500x 8/56000= 0.22 seconds.
m queueing: a couple of packets ~ a few seconds
m processing: similar order to trans, but smaller.

so transmission and queueing times dominate.
m modern national backbone (10 Gbps)

® propagation: coast-to-coast in US ~ 30ms
® transmission: 1500x 8/1.0e1l0= 1.2 ns.
m queueing: large buffers (up to 0.2 seconds)
® processing: ~ 30ns.

so queueing is dominant, unless low load, where

propagation becomes dominant.
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Optimizing for Latency

How fo reduce
m propagation:
m cannot speed up light
m really minimizing length of paths
B queueing:
m reduce queueing by reducing load
H processing:
® minimizing number of hops
® fransmission:

® minimizing packet sizes
e.g. VoIP uses small packets

Communications Network Design: lecture 04 — p.30/39



Optimizing for survivability

The 6 things network engineers care about
m reliability
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Optimizing for survivability

The 6 things network engineers care about
m reliability
m reliability
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Optimizing for survivability

The 6 things network engineers care about

Hre
Hre

Hre
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iabili

iabili
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Optimizing for survivability

The 6 things network engineers care about
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Optimizing for survivability

The 6 things network engineers care about
m reliability
m reliability

m reliability

m reliability
m cost

Communications Network Design: lecture 04 — p.31/39



Optimizing for survivability

The 6 things network engineers care about

Hre
Hre
Hre

Hre

iabili
iabili
iabili

iabili

m cost

m don't forget
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Optimizing for survivability

The 6 things network engineers care about

Hre
Hre
Hre

Hre

iabili
iabili
iabili

iabili

m cost

m don't forget reliability
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Five 9's
Goal of many telecom level providers is

m five nines reliability

m e.g. in IP networks
m uptime is 99.999%
m translates to about 5 minutes downtime per year

m pretty hard to achieve
m not just network design
m disaster recovery processes
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Approach

Often not approached using optimization

m redundancy
m routers, links, power supplies, A/C, ...

m distribution of control

m problem detection and diagnosis
m network post-mortems

m disaster recovery

We will consider some optimization approaches later in
the coarse (if we get time).
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Technological Constraints

The other aspect of optimization is the constraints
m max hode degree

® max humber of line cards per router
® times max ports per card

m max capacity per link
m |imited by speed of line cards
m at best follows Moore's law
m today, around OC762 = 40 Gbps
B max capacity per router
m backplane technology limited (also Moore's law)
m today, around 10 Tbps
m max length of alink (e.g. Ethernet)
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Non-technological Constraints

m geography
m cost of cable in oceans is different from land
m expensive to lay cable in some places

e.g. downtown Manhattan
m politics
m intfernal company organization mandates network
organization

m marketing get a better network than accounting,
even though they have less real need

m security

m may hot want to share network resources
outside of secure building
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Other Constraints

m what if we have more than one objective

m e.g. hetwork should be

fastest
cheapest, and

most reliable
m multi-objective optimization is hard

m use other objectives as constraints, e.g.
m best performance within a budget

m cheapest network which meets performance
constraints

m cheapest network which meets reliability
constraints
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Other issues

m usually there are other inputs to optimization

® traffic measurements
m not always as easy to get as you might think

m planning horizon

m usually when we design a network it takes some
time to build

m often we can't design our network from scratch
m have to deal with legacy equipment
m incremental design
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Network Optimization

m note we apply methods to Internet
m optimization methods are much more widely
applicable
m other networks: transport, post, air travel, ...

m other non-network problems that can be written
in the form of a network

Communications Network Design: lecture 04 — p.38/39



References

Communications Network Design: lecture 04 — p.39/39



	
	Lecture goals/outline
	Network Optimization Goals
	Cost in networking
	Equipment costs
	Link costs
	Simple Example Problem
	Simple Example Problem
	The ``constants''
	The ``constants''
	What is a router?
	Logical Router
	Router Architecture
	Line card
	CPU
	Chassis
	Router Architecture
	Router Architecture
	Router Architecture
	Per packet processing
	BGP routing table size
	Expensive bits
	Router costs
	Link costs alternatives
	Linear model: what's it good for?
	Optimizing for Latency
	Optimizing for Latency
	Different scenarios
	Optimizing for Latency
	Optimizing for survivability
	Five 9's
	Approach
	Technological Constraints
	Non-technological Constraints
	Other Constraints
	Other issues
	Network Optimization
	

