Communications Network Design

lecture 06

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide
March 20, 2009

This lecture introduces the routing problem, and describes a common approach to its solution (Dijkstra's algorithm) for shortest-path routing

Routing

A common approach to routing uses shortest-paths. The canonical algorithm for solving shortest-path routing is Dijkstra's.

Logical vs Physical Network

Possible physical topology (layer 1)

Communications Network Design: lecture 06 - p. $3 / 43$

Logical vs Physical Network

Possible logical network topology (layer 3)

Communications Network Design: lecture 06 - p.5/43

Circuit switching won't go away

Even for purist IP net-heads

- often circuit switching in lower layers
- G-MPLS - lambda-switching
\triangleright WDM allows multiple wavelengths of light to share a single fiber
\triangleright optical cross-connects switch the light
* no electronics involved
* purely optical
\triangleright protocols to set up and tear down optical circuits
- packet forwarding on top of these circuits

Notation and Assumptions

The underlying structure is a graph, with

- a set of nodes $N=\{1,2, \ldots n\}$ (also called vertex)

$$
|N|=n
$$

\triangleright a node could be a router, an AS, a PoP, ...

- a set of links $E \subseteq N \times N$ (also called edges)

$$
\begin{aligned}
& E \subset\{(i, j): i, j \in N, i \neq j\} \\
& |E| \leq n(n-1) / 2
\end{aligned}
$$

\triangleright a link could be a physical link, logical circuit, ...

- assume the links are undirected, so

$$
(i, j)=(j, i)
$$

\triangleright this just makes descriptions easier
\triangleright easily generalized to directed graphs

- The network is defined by the graph, $G(N, E)$

Notation and Assumptions

- Origin-Destination (O-D) pair $(p, q) \in N \times N$
- Let K be the set of all O-D pairs

$$
K=\{[p, q]: p, q \in N\} .
$$

- Offered traffic between O-D pair (p, q) is $t_{p q}$
- The set of paths in $G(N, E)$ joining an O-D pair (p, q) is denoted $P_{p q}$.
\triangleright paths are assumed to be a-cyclic
\triangleright e.g. no node is visited twice
\triangleright e.g. loop free
- The set of all paths in $G(N, E)$ is denoted P.

$$
P=\cup_{[p, q] \in K} P_{p q}
$$

Network Paths

Paths $P_{15}: 1-2-4-5,1-2-6-3-5,1-2-6-5,1-3-5$,
1-3-6-2-4-5, 1-3-6-5, 1-4-2-6-3-5, 1-4-2-6-5, 1-4-5

Notation and Assumptions

- Each link $e \in E$ has a capacity, denoted by $r_{e}(\geq 0)$.
\triangleright In communication networks, this is the maximum service rate, with units of bits/sec ("bit rate").
- If links are uncapacitated,

$$
r_{e}= \begin{cases}\infty, & \forall e \in E \\ 0, & \forall e \notin E\end{cases}
$$

- Links have a physical distance, often measured in terms of propagation delays $d_{e}(\geq 0)$.
\triangleright Where required, assume $d_{e}=\infty, \forall e \notin E$

Routing

- in essence, routing maps
\triangleright end-to-end traffic from p to q, i.e. $t_{p q}$
\triangleright to end-to-end paths in $P_{p q}$
\triangleright to links in E
- there are very many paths
\triangleright can't search them all
\triangleright have to be clever about choice of paths
- can use multiple paths
\triangleright load-balancing - spreads load over paths

Routing

Want to route traffic $t_{p q}$ from node p to q
Decision variables are x_{μ}

$$
x_{\mu}=\text { traffic allocated to path } \mu \in P .
$$

Note that $x_{\mu} \geq 0$ and for all $[p, q] \in K$ and

$$
\sum_{\mu \in P_{p q}} x_{\mu}=t_{p q}
$$

Also the x_{μ} are disjoint

- traffic routed on path $\mu \in P_{p q}$ comes from only $t_{p q}$.

The vector $\mathbf{x}=\left(x_{\mu}: \mu \in P\right)$ is called the routing.

Routing costs

Any routing induces loads on a link

- Denote the load on link $e \in E$ by f_{e}.
- In directed networks, load is called flow
- link loads are obtained by summing the traffic allocated to all paths containing the link e.

$$
f_{e}=\sum_{\mu \in P: e \in \mu} x_{\mu}
$$

- The vector $\mathbf{f}=\left(f_{e}: e \in E\right)$ is called the load on the network.

Routing costs

Assume that load induces cost

- loads cause congestion
\triangleright increases delays
\square can be seen as a type of cost
- we may purchase network capacity from a provider
\triangleright they may charge based on usage
- as network grows
\triangleright we add capacity
\triangleright if more load on links, we need to add capacity sooner, which costs us more
- The cost of the network for a given load \mathbf{f} is $C(\mathbf{f})$

Routing problem

The Routing Problem: Determine the optimal routing \mathbf{x} to minimise $C(\mathbf{f})$

$$
\begin{array}{rlrl}
\hline \text { Formulation: minimize } & C(\mathbf{f}) \text { s.t. } \\
f_{e} & =\sum_{\mu \in P: e \in \mu} x_{\mu}, & & \forall e \in E \\
x_{\mu} & \geq 0, & & \forall \mu \in P \\
\sum_{\mu \in P_{p q}} x_{\mu} & =t_{p q}, & & \forall[p, q] \in K \\
f_{e} & \leq r_{e}, & & \forall e \in E
\end{array}
$$

Routing problem

The Routing Problem: Determine the optimal routing \mathbf{x} to minimise $C(\mathbf{f})$

Linear costs

- Remove capacity constraints
- Assume linear costs, with generic weights α_{e}

$$
C(\mathbf{f})=\sum_{e \in E} \alpha_{e} f_{e}, \quad \alpha_{e} \geq 0, \forall e \in E
$$

- then the cost of using the link is directly proportional to the load on the link, i.e.

$$
C\left(f_{e}\right) \propto f_{e}
$$

- α_{e} is sometimes called
\triangleright the length of the link
\triangleright the link weight
Δ the link cost

Path lengths

Then, in terms of the decision variables,

$$
\begin{aligned}
C(\mathbf{f}) & =\sum_{e \in E} \alpha_{e} f_{e} \\
& =\sum_{e \in E} \alpha_{e}\left(\sum_{\mu \in P: e \in \mu} x_{\mu}\right) \\
& =\sum_{\mu \in P}\left(\sum_{e \in \mu} \alpha_{e}\right) x_{\mu} \\
& =\sum_{\mu \in P} l_{\mu} x_{\mu}
\end{aligned}
$$

- $l_{\mu}=\sum_{e \in \mu} \alpha_{e}$ is called the cost, or length of path $\mu \in P$.
- It is the sum of all the link costs along the path
- Relationship between link cost, and path length
\triangleright longer paths use more resources

Network path-length example

Two possible paths from 1 -> 2

- Path 1 (1-2), and has length $l_{\mu}=7$
- Path 2 (1-3-2), and has length $l_{\mu}=4+4=8$

Special case

Triangle inequality

- the network is fully meshed (a clique),

$$
E=\{(i, j), \forall i, j \in N, i \neq j\}
$$

- the α_{e} satisfy the triangle inequality i.e.

$$
\alpha_{i k} \leq \alpha_{i j}+\alpha_{j k}, \quad \forall i, k, j \in N
$$

- Then the path of minimum cost between any two nodes p, q is the direct link (p, q).
- That is, we route all offered traffic $t_{p q}$ directly from p to q.
- This network is called: a fully meshed network (or clique) with direct link routing.

Dijkstra's algorithm

- most networks are not cliques
- fast method to find shortest paths is Dijkstra's algorithm [1]
\triangleright Edsger Dijkstra (1930-2002)
* Dutch computer scientist
* Turing prize winner 1972.
* "Goto Statement Considered Harmful" paper
- find distance of all nodes from one start point
- works by finding paths in order of shortest first \triangleright longer paths are built up of shorter paths

Dijkstra's algorithm

Input

- graph (N, E)
- link weights α_{e}, define link distances

$$
d_{i j}= \begin{cases}0 & \text { if } i=j \\ \alpha_{e} & \text { where }(i, j)=e \in E \\ \infty & \text { where }(i, j)=e \notin E\end{cases}
$$

- a start node, WLOG assume it is node 1

Output

- distances D_{j} of each node $j \in N$ from start node 1.
- a predecessor node for each node (gives path)

Communications Network Design: lecture 06 - p. $26 / 43$

WLOG = Without Loss of Generality

Dijkstra's algorithm

Dijkstra Example

Let S be the set of labelled nodes.
Initialise: $S=\{1\}$,
$D_{1}=0$,
$D_{j}=d_{1 j}, \forall j \notin S$, i.e. $j \neq 1$.
Step 1: Find the next closest node
Find $i \notin S$ such that $D_{i}=\min \left\{D_{j}: j \notin S\right\}$
Set $S=S \cup\{i\}$.
If $S=N$, stop
Step 2: Find new distances
For all $j \notin S$, se \dagger
$D_{j}=\min \left\{D_{j}, D_{i}+d_{i j}\right\}$
Goto Step 1.

Communications Network Design: lecture 06 - p. $27 / 43$

When we initialize Dijkstra, the initial distances $D_{j}=d_{1 j}$ are implicitly set to ∞ for any nodes not directly connected to node 1.

Step 1 selects a new node to add to our set of labelled nodes. It chooses the node (from the unlabelled set) that is closest (as measured by the current vector D) to the starting node.

Step 2 updates the distance vector D. The distances for the labelled nodes don't change, but for the unlabelled nodes, we set the distance to be the minimum of the distance to a labelled node, and then from that node to the start point

Communications Network Design: lecture 06 - p. $30 / 43$
Dijkstra Example

Dijkstra Example

Communications Network Design: lecture 06 - p. 32/43

Dijkstra Example

Step 2

Dijkstra Example

Communications Network Design: lecture 06 - p. 34/43
Dijkstra Example

Dijkstra Example

Communications Network Design: lecture 06 - p.36/43

Dijkstra Result

SPF tree

Communications Network Design: lecture 06 - p. 37/43

The result of Dijkstra is a tree connecting all nodes back to the initial node. The predecesso of each node can be thought of as its parent in the tree. Given the parents of each node, the tree is completely defined, and so hence are the paths from each node back to the starting node

Dijkstra intuition

- build a (Shortest-Path First) SPF tree
- let it grow
- grow by adding shortest paths onto it
- solution must look like a tree
\triangleright to get paths, we only need to keep track of predecessors, e.g. previous example

node	predecessor
1	-
2	3
3	1
4	3
6	2

Communications Network Design: lecture 06 - p. $38 / 43$

Dijkstra issues

- Dijkstra's algorithm solves single-source all-destinations problem
- easily extended to a directed graph
\triangleright can only join up in the direction of a link
- link-distances (weights) must be non-negative
\triangleright there are generalizations to deal with negative weights
\triangleright not often needed for communications networks
For more examples use
http://carbon.cudenver.edu/~hgreenbe/sessions/dijkstra/DijkstraApplet.html

Dijkstra complexity

Empirical Cisco 7500 and 12000 (GSR) computation times for Dijkstra [2]

[^0]
References

[1] E. Dijkstra, "A note in two problems in connexion with graphs," Numerische Mathematik, vol. 1, pp. 269-271, 1959.
[2] A. Shaikh and A. Greenberg, "Experience in black-box OSPF measurement," in Proc. ACM SIGCOMM Internet Measurement Workshop, pp. 113-125, 2001.

[^0]: Communications Network Design: lecture 06 - p. $41 / 43$

