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Budget constraint model
and branch and bound

Branch and bound is a standard technique for solving
integer programs, by relaxing the problem fo the
non-integer problem to find bounds, and using these to
prune a tree of the possible solutions (rather than
evaluating all possible solutions).
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This lecture introduces an simplified network design problem (the budget constraint model)
and the concept of branch and bound optimization.
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Budget Constraint Model

» separable linear cost model
C(f) = Z (Be+aefe)  where L(f)={ecE: fe >0}
ecLf)

L

= e [, (L(f
ee%f)ﬁ +u; u(L(F)) xu

» separate costs into
> initial investment costs (of laying optical fibre)

C:inv(l—) = G;Be

> operations cost of lighting up the link
Cop(f, L) — e;aefe
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Budget Constraint Model (BCM)

» ealier, we considered the problem
minC(f) = min[Ciny (L) + Cop(f, L)]

subject to the appropriate constraints

» budget constraint model

> have a budget constraint on the investment
costs

Cnv(L)<B
> consider the optimization problem

minCyp(f,L) subject to Cny(L) <B

with additional constraints as above.
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Given L(f) ={ecE: fe >0}

Clf) = > (Betaefe)
<0l
= Z (Be+aefe)
efe>0
= Ce(fe)
efe>0
0 if fe=0
f =
Ce(fe) Be+Uefe if fe>0
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Formulation: of BCM

(P)  min C(f) = Elaefe
ec
s.t. fe = > x. VecE
Weep
Z Xy =1 Vke K
KR
eZe <B
GZEB
Xy >0 YueP

Z =0,0orl VecE

_J 1 iflinkeelL (i.e. we use €)
] 0 iflinkegL (i.e. we don't use €)
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BCM and the triangle inequality

» 0 satisfy the triangle inequality

ajj < Uik + O;j

> because Be have been moved into constraints

> otherwise, link e= (i, j) could be deleted as it is
a longer path than i—k—j
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BCM and Branch and Bound

» this is an old, well studied problem, e.g. see [1]
» NP-hard

» look for heuristic solutions
> branch and bound [2]

» Branch and Bound is the topic of this lecture.
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Notation

We can write an optimization problem several different
ways

» integer linear programming problem, called (IP)

maximize  c'x

subjectto Ax < b
(IP) X > 0
X e Z°

» short form
max{c'x | Ax < b,x > 0,x € Z"}
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Zis the set of integers {...,—3,-2,-1,0,1,2,3,...}
Z" is the n-dimensional integer lattice, e.g. a segment of Z2 is shown at the points in the figure
below.
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Integer programming

» Take an integer linear programming problem
max{c'x | Ax < b,x > 0,x € Z"}

> some of our variables are real (e.g. link loads)
x we have a mixed-integer linear programming
problem

> Z"is the set of n-dimensional vectors of integers
= we will restrict to x € {0,1}"
> Many other classic examples
= travelling salesman problem
x knapsack problem
x set covering problem
x machine scheduling problem
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Converting BCM into integer program

Variables are

1 if linkeeL (i.e. we use €)
0 iflinke¢L (i.e. we don't use €)

Write optimization objective

C() = Y defe 1)
= Yle ) X (2)
€ pEEN
= 3 > acAeM)X, (3)
e n
= [o'Alx (4)
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More information on integer programming can be found at
http://mat. gsia.cnmu. edu/ orcl ass/integer/integer. htm
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(2) follows from the fact that in the BCM fe = z Xy, VeeE.
Ween
(3) we defined the routing matrix A by

1, ifpathpuseslinke ie.ecp
0, otherwise

Ale ) = {

(4) is just a vector/matrix representation of (3), and can be rewritten in the familiar form

C(f)= [%y = It
(f) ugpuxu
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http://mat.gsia.cmu.edu/orclass/integer/integer.html

Converting BCM into integer program

We derive the routing vector x from the z by solving the
shortest path problem (with linear costs) on the graph
determined by the z.
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Converting BCM into integer program

Obvious constraints given in the BCM are

T % = b, VkeK (5)
HHER
EEBeZe < B (6)

we just need to write these in matrix form, but there is
a less obvious contraint

(1-z)fe=(1-2) T % =0 7)
Wesy

which says we cannot put traffic on absent links.
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(7) says that x, = 0 for any path pthat uses a link e that is not present in the network we build,
i.e. we can’t route traffic along links that don'’t exist.
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Relationship to linear programming

For each integer program:
(IP) max{c'x|Ax<b,x>0,x € Z"}
there is an associated linear program:
(LP) max{c'x|Ax <b,x >0}

Now (LP) is less constrained than (IP) so

» If (LP)is infeasible, then so is (IP)

» If (LP)is optimized by integer variables, then that
solution is feasible and optimal for (IP)

» The optimal objective value for (LP) is greater than
or equal to the optimal objective for (IP)
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Bounds

» call the (LP) a relaxation
> because we have relaxed some constraints
» it is easy to solve (usually)
> its a standard linear program
> can use simplex, or interior point methods
» rounding off the solution to the relaxation might
work badly
> it could even produce a partitioned graph
> not all traffic can get through!

» but the (LP) relaxation does provide a bound
> we can use this fo prune branches
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Remember we can always convert a constraint such as
Ax<b,x>0.
into an equality by including slack variables s such that

AX+s=b,x>0,s>0.
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Branching Branching example

» the above gives us bounds for solutions For the network problem, we have decision variables
» we also need to branch _J 1 iflinkeclL (i.e. weuse€)
> at each point where we don't have an integer ] 0 iflinke¢L (i.e. we don't use €)

solution, we can branch by splitting the possible
solutions into two partitions

L=E

> for example, we require x; € {0,1}, but the

relaxation solution was x; = 0.2, we then 21:2/ \éz 1

subdznde the problem into two parts == L=F o,definitely

* X1 =0 included

*X].:l 22:0/ X:l zzzy N:l
> then solve each of these subproblems

L=E\{e,, e} L=E\{e;} L=E\{e L=E,
e,included e,,e,include
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Branch and Bound

» key: if upper bound of a subproblem is less than
objective for a known integer feasible solution, then
> the subproblem cannot have a solution greater
than the already known solution
> we can eliminate this solution
> we can also prune all of the tree below the
solution
» it lets us do a non-exhaustive search of the
subproblems
> if we get to the end, we have a proof of
optimality without exhaustive search
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Branch and Bound: algorithm

1. Initialization: initialize variables, in particular,
start a list of subproblems, initialized with our
original integer program.

2. Termination: ferminate the program when we reach
the optimum (i.e. the list of subproblems is empty).

3. Problem selection and relaxation: select the next
problem from the list of possible subproblems, and

solve a relaxation on it.

4. Fathoming and pruning: eliminate branches of the
tree once we prove they cannot contain an optimal
solution.

5. Branching: partition the current problem into
subproblems, and add these to our list.
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More information and examples of Branch and bound can be found at
http://mat. gsia.cnmu. edu/ orcl ass/integer/integer. htm
http://en.w ki pedi a. org/ wi ki / Branch_and_bound

http://mat hwor | d. wol f ram conf Br anchandBoundAl gorit hm ht m

An instructive paper is
http://ww. rpi.edu/ ~m tchj/papers/| eeej em htm

A list of implementations can be found at
http://ww. mat. univi e. ac. at/ ~neunt gl opt/ software_g. ht m
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http://mat.gsia.cmu.edu/orclass/integer/integer.html
http://en.wikipedia.org/wiki/Branch_and_bound
http://mathworld.wolfram.com/BranchandBoundAlgorithm.html
http://www.rpi.edu/~mitchj/papers/leeejem.html
http://www.mat.univie.ac.at/~neum/glopt/software_g.html

Branch and Bound: example

Consider the problem (from [2])

maximize 13x; + 8%
subject to X1+2% < 10
IP° 5xi+2% < 20
X1 >0,% >0
\ X1, %2 integer
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Branch and Bound: algorithm

Initialization:
» initialize the list of problems L

> set initially £ = {IP°}, where IP® is the initial
problem

> often store/picture L as a tree
» incumbent objective value z, = —

» initial value of upper bound on problem is Zy = o

» constraint set of problem IP is set to be
S = {x e Z"|Ax < b,x > 0}
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The incumbent objective value 7, represents the “best” solution we have found so far. If any
solution does worse than this we can ignore it. Its intial value — is chosen to be the worst
possible, so that any feasible solution will be better than this.

The bound gives us an upper bound on the solution of an integer program. Initially we don’t
know anything, and so the upper bound is effectively undefined by setting it to be zy = .
When we solve the relaxation, we will find out this value.

If the upper bound of a solution Z < 7, then this problem P! obviously cannot achieve the
same objective value that we have already achieved elsewhere in our solutions.

The constraint set S defines the set of possible solutions for the the particular problem =
under consideration.
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Branch and Bound: algorithm

Termination:
» If L=@then we stop
> If Zp = —o then the integer program is
infeasible.
> Otherwise, the subproblem IP' which yielded the

current value of z, is optimal gives the optimal
solution x*
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Branch and Bound: algorithm

Problem selection:
» select a problem from L

> there are multiple ways to decide which problem
to choose from the list
x the method used can have a big impact on
speed

> once selected, delete the problem from the list
Relaxation:
» solve a relaxation of the problem
> denote the optimal solution by xR

> denote the optimal objective value by z*
x Z'= —o if no feasible solutions exist
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We stop branch and bound when we have run out of subproblems (which are listed in £ ) to
solve, i.e., when L is empty.
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For the example

maximize 13x1 + 8%2
subject to X1+ 2X2

IP° Bxq + 2Xp
X1 > 0,x >0

X1, X2 integer

10
20

INIA

the relaxation is

maximize  z=13x; +8xp
subject to X1+ 2X2
5X1 + 2X2

X1 > 0,x >0

10
20

LP°

INIA

which has solutions xR = 2.5 and XJR = 3.75 with 2§ = 625
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Branch and Bound: algorithm

Fathoming :
» we say branch of the tree is fathomed if
> infeasible
> feasible solution, and ZX < z,
> integral feasible solution
* set zp « max{zp, 2%}
Pruning:
» inany of the cases above, we need not investigate
any more subproblems of the current problem
> subproblems have more constraints
> their zmust lie under the upper bound

» Prune any subtrees with Z} < z,
» If we pruned Goto step 2
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Branch and Bound: algorithm

Branching:
» also called partitioning

» want fo partition the current problem into
subproblems

> there are several ways to perform partitioning

» If S is the current constraint set, then we need a
disjoint partition {S1}¥_; of this set

> we add problems {IP" PF_ito L

> IP' is just IP' with its feasible region restricted
to S
» Goto step 2
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We don’t prune the example yet (see later for complete example).
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In the example we partition on x1

» this is the “most infeasible”
> furthest from an integral value

» partition into two subproblems by adding an extra constraint
> IPYhasx; >3
> IP2hasx <2

So now £ = {IP%,IP?}

0
IP LP relaxation solution
o255 | 1= 25 x=3.75

b\

P! x>=3 P2 x<=2
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Branch and Bound: algorithm

1. Initialization: initialize variables, in particular,
start a list of subproblems, initialized with our
original integer program.

2. Termination: ferminate the program when we reach
the optimum (i.e. the list of subproblems is empty).

3. Problem selection and relaxation: select the next
problem from the list of possible subproblems, and
solve a relaxation on ift.

4. Fathoming and pruning: eliminate branches of the
tree once we prove they cannot contain an optimal
solution.

5. Branching: partition the current problem into
subproblems, and add these to our list.
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Branch and Bound: example

Consider the problem (from [2])

maximize 13%; + 8%
subject to X1+ 2Xo
IPO 5x1 + 2%
X1 >0,% >0
\ X1,X2 intfeger

10
20

IA N

with relaxation

maximize z=13x;+8%
subject to X1+ 2%

5% + 2%
\ X1 >0, >0

which has solutions X2 = 2.5 and X3 = 3.75 with 2 = 625

10
20

IAINA

Communications Network Design: lecture 12 — p.26/38

We can think of “branch and bound” as a meta-heuristic — there are many ways to do each
step in the above algorithm, and our choice will build a particular form of branch and bound.
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Branch and Bound: example

» we will partition on x;
> this is the "most infeasible”
x furthest from an integral value
» we will partition on x;

> partition into fwo subproblems by adding an
extra constraint
% IP* has x; >3
% IP? has x; < 2

» L= {IP"IP"
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Branch and Bound: example

0
IP LP relaxation solution
ZR: 62.5 X1= 2.5, Xo= 3.75

r

P x>=3 IP? x<=2

£ ={IP'IP?%}
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Branch and Bound: example

Problem selection (just chose in order) of IP*

[ maximize 13%x; + 8%
subject to X1+2% < 10
IP]_ 51 +2x, < 20
Xp > 3
X1 >0,% >0
\ X1, %2 integer

The relaxation (to a LP) has solutions
» x}=3and x3 =25 with & =59
» we will next partition on x,
> IP has X, <2
> IP* has x, > 3
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Branch and Bound: example

0
IP LP relaxation solution
ZR: 62.5 X1= 2.5, Xo= 3.75

r

LP soln
x=3, Xp=2.5

IP x>=3 IP? x<=2

Z:59

v\

3 )(l>:
IP3 s>

3

=3

4 x>=3
IPT =3

£ ={IP* IP° IPY}
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Branch and Bound: example

Problem selection (best bound) of IP?

maximize 13x; + 8%
subject to X1+2x < 10
IP2 51 +2x, < 20
X < 2
X1 > 0,% >0
\ X1, %2 integer

The relaxation (to a LP) has solutions
» x2=2and x3 =4 with 22 =58
» integral feasible
» Zp =58
» IP”is fathomed
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Branch and Bound: example

0
IP LP relaxation solution
ZR: 62.5 X1= 2.5, Xo= 3.75

r

1 — 2 -
LP soln IP* x%>=3 IP< x<=2 LP soln
X1= 3, X2:25 f: 59 ZR: 58 X = 2, Xo= 4
integer solution
=> fathomed
z,=58
3 X>=3 4 X>=3
IP 23 IP oy
3 4
£={IP° IP"
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Branch and Bound: example

Problem selection (order) of IP®

maximize 13x1 + 8%,
subject to X1+2x < 10
51+2x, < 20
IP? Xy > 3
Xo > 3
X1 > 0,% >0
X1, %2 integer

The relaxation (to a LP) is infeasible

> =0
» IP®is fathomed
» L= {IP"}
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Branch and Bound: example

Problem selection (only possible one) of IP"

maximize 131 + 8%,
subject to X1+ 2%
5X1 + 2%

IP4 X1
X2

X1 > 0,% >0
X1,%2 integer

VAN AVAR VAR VAN
w N P
o O

N

\

The relaxation (to a LP) has solution
» x2=3.2and xg =2 with |72 = 57.6 < z,

» IP*is fathomed
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Branch and Bound: example

0
IP LP relaxation solution
= 625 | %= 2.5 x,=3.75

r

LP soln 1P x>=3 IP? x<=2 LP soln
X1= 3, X2:25 f: 59 f: 58 X= 2, Xo= 4
integer solution
=> fathomed
z,=58
3 X>=3 4 X>=3
IP )é>: 3 IP x§<: 2 | LP soln
2?: 57.6 X]_:3.2, Xo = 2
infeasibl Re 2
=>faihomed = feznh:mzéd
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Branch and Bound: example

Zz=58

60—
50—
40—

N 30—

20—

10—
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Branch and Bound

» Bd&B is a very general algorithm
> as described above we seek the optimum
> can also be used as a heuristic
» different strategies available for each step above
> can use heuristics inside B&B
> pre-processing of the problem can be good
» no single strategy stands out as best for all
problems

> but sometimes we can exploit properties of a
particular problem to do better
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