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Part I

A Recap of Probability
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It is impossible for a Die, with such determin’d force and di-
rection, not to fall on such determin’d side, only I don’t know
the force and direction which makes it fall on such determin’d
side, and therefore I call it Chance, which is nothing but the
want of art....

John Arbuthnot
(in the preface of ’Of the Laws of Chance’, 1692)
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Probability

Topics you should be familiar with:

Axiomatic Probability

Random Variables

Distributions: focussing on discrete distributions

Conditional Probability

Expectations

Jensen’s Inequality

Markov Chains (but we will cover these later)
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Section 1

Probability Axioms
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Probability Axioms

What does “we get heads with probability half” mean?
I it could mean that we believe a coin flipped a number of times n will

come up heads n/2 times but that patently isn’t true
I it could mean that in the long run it comes up heads half the time but

what if we know an event will only occur once?
I what about a more fundamental approach

Axioms state things that we believe are intuitively true, but not
provable.

I they are the starting points of reasoning

Probability axioms are defined on sets
I I assume you know set notation and rules
I we talk about subsets of elements as events
I we will denote the certain event Ω
I we will talk about the probability of event E ⊆ Ω being P(E ).
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Probability Axioms

The axioms are

1 P(E ) ∈ R+, i.e., P(E ) is real, and non-negative

2 P(Ω) = 1, i.e., probability of the entire sample space is 1.

3 Any countable, sequence of disjoint events E1,E2, . . . satisfies

P(E1 ∪ E2 ∪ · · · ) =
∑
i

P(Ei ).
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Immediate Consequences

1 Monotonicity
if A ⊆ B then P(A) ≤ P(B)

2 Empty set φ has probability zero: P(φ) = 0.

3 Probabilities are all bounded: 0 ≤ P(E ) ≤ 1.

4 Complementary probabilities

P(E c) = P(Ω\E ) = 1− P(E ).

5 Addition law

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

6 Law of total probability: given a countable partition of Ω into
E1,E2, . . . ,, we can write the probability

P(A) =
∑
i

P(A ∩ Ei ).
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Section 2

Random Variables
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Random Variables

http://xkcd.com/221/
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Random Variables

Intuitively a Random Variable (RV) is a variable, e.g., X , that takes a
random numerical value.

1 probability is defined on sets, but a lot of the time we just want a
random number

2 we’ll use X , Y , and Z to mean a RV, and x , y , and z to mean the
values they take.

But they still have to satisfy the axioms of probability, and we want a firm
foundation to work on.
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Random Variables: formal approach

Consider an experiment with a sample space Ω.
1 We take a set of subsets of this called σ(Ω)

1 technically this should be a σ-algebra, but we won’t need to deal too
much with this here

2 A RV is a mapping from σ(Ω) to the reals, e.g.

X : σ(Ω)→ R.

So for each possible outcome we might measure, we assign a number,
which is our RV.
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Cumulative Distribution Function (CDF)
Now we can assign probabilities to RV values.

1 Because they are on a number line we exploit the ordering, and use
the CDF defined thus

FX (x) = P(X ≤ x) = P
(
{e ∈ Ω|X (e) ≤ x}

)
.

2 Properties
1 FX (−∞) = 0 and FX (∞) = 1
2 Nondecreasing: x1 ≤ x2 implies FX (x1) ≤ FX (x2)
3 Right continuous

lim
ε→0

FX (x + ε) = FX (x), for ε > 0

but not necessarily left-continuous.

3 The density function (where defined) is the derivative of the CDF, but
we have to be careful about this because it isn’t always defined.

1 in particular for discrete distributions its more useful to work with the
probability mass function.
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Section 3

Discrete Distributions
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Probability Mass Function (PMF)

In this course, we will mostly deal with discrete distributions:

1 intuitively RV takes on a (countable) set of discrete values xi ;

2 CDF is piecewise constant;

In these cases, the PMF is sometimes more useful

pX (xi ) = P(X = xi ) = FX (xi )− FX (x−i ),

where x−i = the left-hand limit.

We often simplify when the context is clear, e.g.,

pX (xi ) = p(xi ) = pi .
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Joint Distributions

Given two (discrete) random variables X and Y , we write the joint PMF

pX ,Y (x , y) = P(X = x and Y = y).
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Example Distributions

1 Uniform: Ω = {1, 2, . . . , n}

p(k) = 1/n.

2 Bernoulli: Ω = {0, 1}

p(1) = p, and p(0) = 1− p = q

3 Binomial (sum of n independent Bernoulli trials): Ω = {0, 1, . . . , n}

p(k) =

(
n

k

)
pk(1− p)n−k .

4 Poisson: Ω = Z+, the non-negative integers:

p(k) =
λke−λ

k!

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 9, 2013 17 / 40



Laplace’s principle of insufficient reason

The theory of chance consists in reducing all the events of
the same kind to a certain number of cases equally possible,
that is to say, to such as we may be equally undecided about
in regard to their existence, and in determining the number
of cases favorable to the event whose probability is sought.
The ratio of this number to that of all the cases possible is
the measure of this probability, which is thus simply a fraction
whose numerator is the number of favorable cases and whose
denominator is the number of all the cases possible.

Pierre Simon Laplace

If we don’t know any better, then assume a uniform distribution.
I this is used a lot, e.g., probability of the Ace of Hearts
I its pretty fundamental, but also axiomatic in nature

Called “Principle of Indifference” by John Maynard Keynes (1921)
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Section 4

Conditional Probability
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Probability Axioms (revisited)

We left one thing out of the axioms: conditional probability
1 Define P(A|B) as

1 probability of A conditioned on B
2 probability of A given B
3 probability of A will occur, given that we know B has, or will occur
4 probability of A accounting for the evidence B

2 Missing Axiom

P(A|B) =
P(A ∩ B)

P(B)
, if P(B) > 0.
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Independence

Two events A and B are said to be independent iff

P(A|B) = P(A),

Equivalently:

1 P(B|A) = P(B)

2 P(A ∩ B) = P(A)P(B)
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Bayes’ Law

P(A|B) = P(B|A)
P(A)

P(B)
.

much more could be said about this

interpretation of this rule has caused arguments amongst statisticians
for centuries
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Law of Total Probability (reprise)

Given a countable partition of Ω into E1,E2, . . . ,, we can write the
probability

P(A) =
∑
i

P(A ∩ Ei )

=
∑
i

P(A|Ei )P(Ei ).
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Probabilistic Chain Rule

P(An ∩ An−1 ∩ · · · ∩ A1) = P(An|An−1 ∩ · · · ∩ A1)P(An−1 ∩ · · · ∩ A1)

= P(An|An−1 ∩ · · · ∩ A1)

×P(An−1|An−2 ∩ · · · ∩ A1)

×P(An−2 ∩ · · · ∩ A1)

So
P(A3 ∩ A2 ∩ A1) = P(A3|A2 ∩ A1)P(A2|A1)P(A1).
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Section 5

Expectations
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Expectation

The expectation of a (discrete) random variable taking values xi is defined
to be

E [X ] =
∑
i

xipX (xi ).

the expectation is commonly called the average or mean

Example: expectation of a uniform random variable U:

E [U] =
1

n

n∑
i=1

ui .

Example: expectation of a Poisson random variable

E [X ] =
∞∑
k=0

kp(k) = λe−λ
∞∑
k=0

k
λk−1

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λ.
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Expectations of functions

We can take expectations of a function of a random variable

E [g(X )] =
∑
i

g(xi )p(xi ).

Examples:
I

E [− log2(X )] = −
∑
i

log2(xi )p(xi ).

I An indicator function is

IA(X ) =

{
1, if x ∈ A,
0, otherwise.

The expectation of an indicator is

E [IA(X )] = P(x ∈ A).
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Expectations of functions

We can take expectations of a function of a random variable

E [g(X )] =
∑
i

g(xi )p(xi ).

One approach to defining higher-order moments of a distribution is to
say the pth moment is

mp = E [X p] =
∑
i

xpi p(xi ).

or the pth central moment is

µp = E
[(
X − E [X ]

)p]
=
∑
i

(
xi − E [X ]

)p
p(xi ).
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Convex functions

x y

f(x)

αx + (1-α)y

αf(x) + (1-α)f(y)

f(αx + (1-α)y)
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Convex functions

A function f defined on a convex set C ⊆ Rn is

1 convex if for all x, y ∈ C and α ∈ [0, 1]

f
(
αx + (1− α)y

)
≤ αf (x) + (1− α)f (y),

2 strictly convex if ∀ x, y ∈ C and α ∈ (0, 1)

f
(
αx + (1− α)y

)
< αf (x) + (1− α)f (y).
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Jensen’s Inequality

For any random variable X and convex function g(·) Jensen’s inequality
states:

g
(
E [X ]

)
≤ E

[
g(X )

]
and if g(·) is strictly convex, then equality only holds for X deterministic.
Examples

E [X 2] ≥ E [X ]2

e.g., consider X = {−1, 1} each with probability 1/2

E
[
|X |
]
≥
∣∣E [X ]

∣∣
e.g., again consider X = {−1, 1} each with probability 1/2

E [− log(X )] ≥ − log
(
E [X ]

)
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Gibbs’ Inequality

Take two probability mass functions pi = p(xi ) and qi = q(xi ) defined over
the same set of events xi . Then

−
∑
i

pi log2 pi ≤ −
∑
i

pi log2 qi ,

with equality iff pi = qi .
Proof: use Jensen on the negative log of random variables taking values
yi = qi/pi with probability pi .
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Properties of Expectation

1 Jensen: for convex g(·)

g
(
E [X ]

)
≤ E

[
g(X )

]
.

2 Indicators
E [IA(X )] = P(x ∈ A).

3 Linearity
E [aX + bY ] = aE [X ] + bE [Y ].
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Conditional Expectation

We can also define the expectation conditional on an event, e.g.,

E [X |Y = y ] =
∑
i

xip(xi |y).

Conditional expectations behave in most ways like normal expectations,
just WRT to a different probability measure.
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Conditional Expectation as a RV

If the event we are conditioning on is a RV itself, then the conditional
expectation E [X |Y ] is a RV too:

It is a function mapping the values of Y to real numbers

We can talk about probabilities, expectations and so on

If X and Y are independent

E [X |Y ] = E [X ]

If X is completely determined by Y , e.g., X = g(Y ) then

E [X |Y ] = E [g(Y )|Y ] = g(Y ) = X

Also
E
[
E [X |Y ]

]
= E [X ]
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Section 6

Examples
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Example 1: binary communications system

information
source destination

probability p

transmission
channel

1 1

00
probability p

probability
 q=1-p

Assume input probabilities are p0 and p1
Output probability of a 1, conditioned on input being 1 is
P(o = 1|i = 1) = p

Output probability of a 1 (using Law of Total Probability)

o1 = P(o = 1|i = 0)p0 + P(o = 1|i = 1)p1 = (1− p)p0 + pp1.

Expected output is

E [output] = 1× o1 = (1− p)p0 + pp1.
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Example 2: English letter frequencies

http://en.wikipedia.org/wiki/Letter_frequency
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Assignment

Learn Morse Code. You will need to be able to translate Morse Code into
text, from memory (though not in real time) by next lecture.
There are some helpful web sites:

http://www.learnmorsecode.com/

http://www.wikihow.com/Learn-Morse-Code

http://www.justlearnmorsecode.com/

As I said, don’t worry about timing, we’ll be writing out translations, but I
will test you.
Write a short (less than 1/2 a page) description of how redundancy in
language and the Morse code interact. For instance, what happens if a
telegraph line is noisy, and how efficient is Morse code?
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Further reading I

Rick Durrett, Probability: Theory and examples, 3rd ed., Thomson, 2005.

William Feller, An introduction to probability theory and its applications, second
ed., vol. I, John Wiley and Sons, New York, 1971.

, An introduction to probability theory and its applications, second ed.,
vol. II, John Wiley and Sons, New York, 1971.

Karlin, A first course in stochastic processes, Academic Press, 1969.

J.F.C. Kingman and S.J. Taylor, Introduction to measure and probability,
Cambridge University Press, 1966.

Henry Stark and John Woods, Probability and random processes with applications
to signal processing, 3rd ed., Prentice Hall, 2002.
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