Information Theory and Networks

Lecture 4: Uncertainty and Entropy

Matthew Roughan
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/
Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide
September 18, 2013

Part I

Uncertainty and Entropy

In the beginning was the word ... John 1:1

Morse code test

- / / -. --- - / .- / -.. --. .. .-.. -...

Symbols

We take symbols for granted: we are taught them at an early age, and our entire consciousness is formed around language and symbols, so we don't really appreciate what they do for us.

- Start with symbols for things: pictograms
- many to learn - one per word
- specialised knowledge
- Alphabets code for small bits of words
- anyone can learn
- any language can be expressed in the one alphabet (almost)
- but its a profound jump from pictograms
- in turn this shapes language, and how powerful it can become
- What about numbers?
- how recent is our notation?

What was all that?

- We are going to be talking about transmission of information, so we need to know the form it takes:
- some sequence of abstract symbols
- Even if a message is long, its information content may be small, e.g., I could say
- "111111111111111111111111111111" or "30 1s"
or
- "110010010000111111011010101000100" or ??
so we need a better idea to express information
- More to the point, if I only ever send the two messages:

$$
1010101010110 \text { and } 1111111111111
$$

I could replace them with X and Y

- I still have 2 symbols, but messages are shorter
- So information isn't a function of the messages themselves!!!

Uncertainty and Information and Surprise

- Information cancels out uncertainty
- think of uncertainty as not knowing which symbol was transmitted
- when you receive the signal (information) the uncertainty is removed
- Fundamentally, to understand information, we have to understand uncertainty
- implicitly, the information of an event or message, depends on the ensemble of all possible events, e.g., how much information is there in
$\star \quad X=1$ in the context of X always equals 1 ?
$\star X=1$ when it could take many other values?
- We might improve our intuition about information, if we think of high-information content messages as being more surprising:
- e.g., how surprising is
$\star \quad X=1$ in the context of X always equals 1 ?
$\star \quad X=1$ when it could take many other values?
- so information should be a function of probability of the message.

Can we come up with some axioms?

What properties should a metric of information have?

Information

Lets think about information we from an event

- Say the event has probability p, and I tell you it occurs, then say I am conveying information $I(p)$.
- Simple things
- its a metric, and so should be number.
- can't have negative information
* $I(p) \geq 0$
- a small change in p leads to a small change in $I(p)$
$\star I(p)$ is continuous
- we want it to differentiate between cases so

$$
I(p)=I(q) \text { only if } p=q .
$$

Information

Lets think about information we get from a pair of events

- Say the event has probability p, and I tell you it occurs, then say I am conveying information $I(p)$.
- Events that are less likely convey more information
- e.g., if I pick a card from a deck and tell you it is an ACE it conveys more than if I tell you its a SPADE
- i.e.

$$
\text { if } p \leq q, \text { then } I(p) \geq I(q)
$$

Information

Lets think about information we from an event

- Say the event has probability p, and I tell you it occurs, then say I am conveying information $I(p)$.
- What happens with two messages or events?
- e.g. imagine I tell you that
\star a card is an ACE
* a card is a SPADE
- reasonable hypothesis is that if the two events/messages are independent, then the information from the two adds, i.e.,

$$
I(A C E \text { OF SPADES })=I(A C E)+I(S P A D E)
$$

- independent events have $P(A \cap B)=P(A) P(B)$ so

$$
I(p q)=I(p)+I(q)
$$

- Note that if we take $p=q=1$, we get $I(1.1)=I(1)+I(1)$, so $I(1)=0$.

Information Axioms

For all $p, q \in(0,1)$
(1) Continuous, real-valued, non-negative function
(2) Decreasing, and distinguishes values

$$
\text { if } p<q, \text { then } I(p)>I(q)
$$

(3) Independent events have

$$
I(p q)=I(p)+I(q)
$$

Theorem

The only function I(•) which satisfies the above axioms is

$$
I(p)=-k \log (p), \text { for some constant } k
$$

Sort of makes sense as we need $n=\log (m)$ bits to represent a number of size m (think of numbers as our possible messages), so if all numbers up to m were equally possible, then ...

Theorem

The only function I(•) which satisfies the above axioms is

$$
I(p)=-k \log (p), \text { for some constant } k
$$

Proof.

It is easy to show $I(\cdot)$ satisfies the axioms, so other direction:
(1) As noted $I(p q)=I(p)+I(q)$ implies $I(1)=0$.
(2) $I(p q)=I(p)+I(q)$ also implies

$$
I\left(p^{k}\right)=k I(p),
$$

which we can show by induction taking $p^{k+1}=p \times p^{k}$, so

$$
I\left(p^{k+1}\right)=I(p)+I\left(p^{k}\right)=I(p)+k I(p)=(k+1) I(p) .
$$

Proof (Cont.)

(1) Take a probability p, then for any positive integer r there exists a k such that

$$
p^{k+1} \leq(1 / 2)^{r}<p^{k}
$$

From monotonicity

$$
I\left(p^{k+1}\right) \geq I\left(2^{-r}\right)>I\left(p^{k}\right)
$$

And from previous result

$$
(k+1) I(p) \geq r I\left(2^{-1}\right)>k I(p)
$$

or

$$
\frac{(k+1)}{r} \geq \frac{I\left(2^{-1}\right)}{I(p)}>\frac{k}{r}
$$

Proof (Cont.)

$$
\frac{(k+1)}{r} \geq \frac{I\left(2^{-1}\right)}{I(p)}>\frac{k}{r}
$$

and we also know from properties of logs and similar argument

$$
\frac{(k+1)}{r} \geq \frac{\log \left(2^{-1}\right)}{\log (p)}>\frac{k}{r}
$$

So the two middle terms can differ by no more than $1 / r$, i.e.,

$$
\left|\frac{\log \left(2^{-1}\right)}{\log (p)}-\frac{I\left(2^{-1}\right)}{I(p)}\right|<\frac{1}{r}
$$

We fixed p so take the limit as $r \rightarrow \infty$ and the two must converge so

$$
I(p)=C \log (p)
$$

and the constant $C=I(1 / 2) / \log (1 / 2)$ is determined by $I(1 / 2)$ which is arbitrary, depending on units, and implies the base of the log.

Can we come up with some axioms?

What properties should a metric of uncertainty have?

- Obviously similar/related to information
- Our idea of information of a message isn't good enough because it is about one message, and we need to deal with all of the possible messages.
- What else can we say?

Uncertainty

Lets think from uncertainty viewpoint

- Its a metric, and so should be real, non-negative number.
- We are talking about (discrete) probabilistic systems, so lets make it a function of the PMF.

$$
\text { uncertainty }=H\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$

- it doesn't depend on the messages themselves
- If two distributions are just reordered versions of each other, e.g., $\left(q_{1}, q_{2}\right)=\left(p_{2}, p_{1}\right)$, then that shouldn't change uncertainty.
- Our measure should increase as "uncertainty" increases
- maybe we should make it continuous?
- are there any other rules?

Can we come up with some axioms for uncertainty?

It should increase as "uncertainty" increases.

- Consider a Bernoulli trial with $\Omega=\{0,1\}$, and probability p of success.
- we are least uncertain when $p=0$ or 1 because the outcome is fixed.
- most uncertain when $p=1 / 2$
- so we need a function of $(p, 1-p)$ with its \min for $p=0$ or 1 , and max for $p=1 / 2$
- also $H(p, 1-p)=H(1-p, p)$ so it has symmetry

Can we come up with some axioms for uncertainty?

It should increase as "uncertainty" increases.

- If we have uniform distributions with M possibilities $p_{i}=1 / M$, then uncertainty should increase as M increases as there are more possible outcomes.
- from previous discussion of information, it probably makes sense for it to increase logarithmically
- we can get that again from assuming the distribution is uniform over $\{1, \ldots, M\} \times\{1, \ldots, L\}$, and noting there are $M L$ possible events, but if we condition on one there are M or L left, and so we get the same type of sum we saw for information:

$$
f(M L)=f(M)+f(L)
$$

Can we come up with some axioms for uncertainty?

The grouping axiom

- Imagine an experiment with M outcomes and PMF p_{i}
- divide the outcomes into two groups

$$
A=\left\{x_{1}, \ldots, x_{r}\right\} \text { and } B=\left\{x_{r+1}, \ldots, x_{M}\right\}
$$

- where

$$
P(A)=\sum_{i=1}^{r} p_{i} \text { and } P(B)=\sum_{i=r+1}^{M} p_{i}
$$

- We could conduct the experiment two ways:
- Randomly draw X using the PMF p_{i}
- Randomly draw Y using $P(A)$ and $P(B)$ to determine the group and then, draw from the groups:
* if $Y=A$, then using $q_{i}=P\left(X=x_{i} \mid Y=A\right)=p_{i} / P(A)$, for $i \in A$
\star if $Y=B$, then using $q_{j}=P\left(X=x_{j} \mid Y=B\right)=p_{j} / P(B)$, for $j \in B$

Can we come up with some axioms for uncertainty?

The grouping axiom

- Two equivalent ways to do the experiment
- so must have the same uncertainty
- If we revealed the group selected, the uncertainty would be
- if $Y=A$, it would be $H\left(q_{1}, \ldots, q_{r}\right)$
- if $Y=B$, it would be $H\left(q_{r+1} \ldots, q_{M}\right)$
- The expected uncertainty of when the grouping is specified is

$$
P(A) H\left(q_{1}, \ldots, q_{r}\right)+P(B) H\left(q_{r+1} \ldots, q_{M}\right)
$$

The uncertainty about the grouping is

$$
H(P(A), P(B))
$$

Total uncertainty of grouped experiment

$$
H_{\text {group }}=H(P(A), P(B))+P(A) H\left(q_{1}, \ldots, q_{r}\right)+P(B) H\left(q_{r+1} \ldots, q_{M}\right)
$$

- So the uncertainty calculated two ways should be

$$
H\left(p_{1}, \ldots, p_{M}\right)=H_{\text {group }}
$$

Entropy

- The only function that satisfies all of these axioms is

$$
H\left(p_{1}, \ldots, p_{n}\right)=-\sum_{i} p_{i} \log p_{i}
$$

- we should be able to see that it is the expectation of the information function we defined earlier
- We call this the Shannon entropy because
- given different axioms we might come up with a different function
- entropy has a long history, but Shannon was the first to use it in the context of information

Further reading I

Robert B. Ash, Information theory, Dover, 1995, Reprinted from John Wiley, 1965.
Gjerrit Meinsma, Data compression \& information theory, Mathematisch cafe, 2003, wwwhome.math.utwente.nl/~meinsmag/onzin/shannon.pdf.

