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Uncertainty and Entropy



In the beginning was the word ...
John 1:1
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Morse code test
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Symbols

We take symbols for granted: we are taught them at an early age, and our
entire consciousness is formed around language and symbols, so we don't
really appreciate what they do for us.
@ Start with symbols for things: pictograms
» many to learn — one per word
> specialised knowledge
@ Alphabets code for small bits of words
» anyone can learn

» any language can be expressed in the one alphabet (almost)
» but its a profound jump from pictograms

> in turn this shapes language, and how powerful it can become
e What about numbers?

» how recent is our notation?
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What was all that?

@ We are going to be talking about transmission of information, so we

need to know the form it takes:
» some sequence of abstract symbols

@ Even if a message is long, its information content may be small, e.g.,

| could say

» “1111111111111711111111111111111" or “30 1s"
or

» “110010010000111111011010101000100" or ?7
so we need a better idea to express information

@ More to the point, if | only ever send the two messages:

1010101010110 and 1111111111111

| could replace them with X and Y

> | still have 2 symbols, but messages are shorter
» So information isn't a function of the messages themselves!!!
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Uncertainty and Information and Surprise

@ Information cancels out uncertainty
» think of uncertainty as not knowing which symbol was transmitted
» when you receive the signal (information) the uncertainty is removed
@ Fundamentally, to understand information, we have to understand
uncertainty
» implicitly, the information of an event or message, depends on the
ensemble of all possible events, e.g., how much information is there in
* X =1 in the context of X always equals 17
* X =1 when it could take many other values?
@ We might improve our intuition about information, if we think of
high-information content messages as being more surprising:
> e.g., how surprising is
* X =1 in the context of X always equals 17
* X =1 when it could take many other values?

» so information should be a function of probability of the message.
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Can we come up with some axioms?

What properties should a metric of information have?
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Information

Lets think about information we get from an event

@ Say the event has probability p, and | tell you it occurs, then say | am
conveying information /(p).
@ Simple things
> its a metric, and so should be number.
» can’t have negative information
*x I(p) >0
» a small change in p leads to a small change in /(p)
* [(p) is continuous

» we want it to differentiate between cases so

I(p) = I(q) only if p=gq.
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Information

Lets think about information we get from a pair of events

@ Say the event has probability p, and | tell you it occurs, then say | am
conveying information /(p).
@ Events that are less likely convey more information

» e.g., if | pick a card from a deck and tell you it is an ACE it conveys
more than if | tell you its a SPADE
> e
if p<gq, then I(p) > I(q).
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Information

Lets think about information we get from an event
@ Say the event has probability p, and | tell you it occurs, then say | am
conveying information /(p).

@ What happens with two messages or events?
> e.g. imagine | tell you that

* a card is an ACE
* a card is a SPADE

» reasonable hypothesis is that if the two events/messages are
independent, then the information from the two adds, i.e.,

I(ACE OF SPADES) = I(ACE) + I(SPADE)
» independent events have P(AN B) = P(A)P(B) so

I(pq) = I(p) + 1(q)

» Note that if we take p =g =1, we get /(1.1) = /(1) + /(1), so
I(1)=0.
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Information Axioms

For all p,q € (0,1)
@ Continuous, real-valued, non-negative function
@ Decreasing, and distinguishes values

if p<gq, then I(p) > I(q).
© Independent events have

I(pq) = 1(p) + I(q)

Theorem

The only function I(-) which satisfies the above axioms is

I(p) = —klog(p), for some constant k.

Sort of makes sense as we need n = log(m) bits to represent a number of
size m (think of numbers as our possible messages), so if all numbers up
to m were equally possible, then ...
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Theorem

The only function I(-) which satisfies the above axioms is

I(p) = —klog(p), for some constant k.

Proof.

It is easy to show /(-) satisfies the axioms, so other direction:

@ As noted /(pg) = I(p) + I(q) implies /(1) = 0.
@ /(pq) = I(p) + I(q) also implies

1(p*) = kI(p),

which we can show by induction taking p¥*1 = p x p*, so

1(p*™) = 1(p) + 1(p*) = I(p) + k I(p) = (k+1) I(p).
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Proof (Cont.)
© Take a probability p, then for any positive integer r there exists a k

such that
pk+1 < (1/2)r < pk

From monotonicity
1(p*h) > 1(277) > 1(p")
And from previous result

(k+1)1(p) = r1(27) > ki(p)

o (k+1) _ I1(27Y) &
S i) v |
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Proof (Cont.)
-1
(k+1) 17Nk
p

r I(p)

and we also know from properties of logs and similar argument

r — log(p) ~ r

(k+1)  log(2!) _ &

So the two middle terms can differ by no more than 1/r, i.e.,

log(271) 12| _ 1
log(p) I(p) r

We fixed p so take the limit as r — oo and the two must converge so

I(p) = Clog(p)

and the constant C = /(1/2)/log(1/2) is determined by /(1/2) which is
arbitrary, depending on units, and implies the base of the log.

v
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Can we come up with some axioms?

What properties should a metric of uncertainty have?
@ Obviously similar/related to information

@ Our idea of information of a message isn't good enough because it is
about one message, and we need to deal with all of the possible
messages.

@ What else can we say?
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Uncertainty

Lets think from uncertainty viewpoint
@ Its a metric, and so should be real, non-negative number.

e We are talking about (discrete) probabilistic systems, so lets make it
a function of the PMF.

uncertainty = H(p1, p2, ..., Pn)

> it doesn't depend on the messages themselves

o If two distributions are just reordered versions of each other, e.g.,
(g1, 92) = (p2, p1), then that shouldn’t change uncertainty.
@ Our measure should increase as “uncertainty” increases

» maybe we should make it continuous?
> are there any other rules?
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Can we come up with some axioms for uncertainty?

It should increase as “uncertainty” increases.

e Consider a Bernoulli trial with Q = {0, 1}, and probability p of
success.

> we are least uncertain when p = 0 or 1 because the outcome is fixed.

» most uncertain when p = 1/2

» so we need a function of (p,1 — p) with its min for p =10 or 1, and
max for p =1/2

» also H(p,1— p) = H(1 — p, p) so it has symmetry
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Can we come up with some axioms for uncertainty?

It should increase as “uncertainty” increases.

o If we have uniform distributions with M possibilities p; = 1/M, then
uncertainty should increase as M increases as there are more possible
outcomes.

» from previous discussion of information, it probably makes sense for it
to increase logarithmically

> we can get that again from assuming the distribution is uniform over
{1,..., M} x {1,..., L}, and noting there are ML possible events, but if
we condition on one there are M or L left, and so we get the same type
of sum we saw for information:

F(ML) = £(M) + f(L)
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Can we come up with some axioms for uncertainty?

The grouping axiom

@ Imagine an experiment with M outcomes and PMF p;
» divide the outcomes into two groups

A={x,....,x.}and B={x41,...,xm}

> where "
P(A)=> piand P(B)= Y p;
i=1 i=r+1
@ We could conduct the experiment two ways:

» Randomly draw X using the PMF p;
» Randomly draw Y using P(A) and P(B) to determine the group and
then, draw from the groups:
* if Y = A, then using gi = P(X = x;|Y = A) = p;/P(A), for i € A
* if Y = B, then using q; = P(X = xj|Y = B) = p;/P(B), for j € B

Matthew Roughan (School of Mathematical ¢ September 18, 2013 20/ 23



Can we come up with some axioms for uncertainty?
The grouping axiom
@ Two equivalent ways to do the experiment
» so must have the same uncertainty
o If we revealed the group selected, the uncertainty would be
» if Y =A, it would be H(q1,...,q/)
» if Y =B, it would be H(gr41--.,qm)

@ The expected uncertainty of when the grouping is specified is
P(A)H(q1,- .., qr) + P(B)H(gr+1- - -, qum)
The uncertainty about the grouping is
H(P(A), P(B))

Total uncertainty of grouped experiment

Hgroup = H(P(A), P(B)) +P(A)H(q1, .- ., qr)+ P(B)H(qr+1- .- . am)
@ So the uncertainty calculated two ways should be

H(p1, .-, pm) = Hgroup
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Entropy

@ The only function that satisfies all of these axioms is

H(p1, ..., pn) = — Y pilog pi,
i

» we should be able to see that it is the expectation of the information

function we defined earlier

@ We call this the Shannon entropy because
» given different axioms we might come up with a different function
> entropy has a long history, but Shannon was the first to use it in the

context of information
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Further reading |

Robert B. Ash, Information theory, Dover, 1995, Reprinted from John Wiley, 1965.

Gjerrit Meinsma, Data compression & information theory, Mathematisch cafe,

2003, wwwhome .math.utwente.nl/~meinsmag/onzin/shannon.pdf.
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