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Part I

Uncertainty and Entropy
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In the beginning was the word ...

John 1:1
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Morse code test

- .... .. ... / .. ... / -. - - - - / .- / -.. .-. .. .-.. .-..
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Symbols

We take symbols for granted: we are taught them at an early age, and our
entire consciousness is formed around language and symbols, so we don’t
really appreciate what they do for us.

Start with symbols for things: pictograms
I many to learn – one per word
I specialised knowledge

Alphabets code for small bits of words
I anyone can learn
I any language can be expressed in the one alphabet (almost)
I but its a profound jump from pictograms
I in turn this shapes language, and how powerful it can become

What about numbers?
I how recent is our notation?
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What was all that?

We are going to be talking about transmission of information, so we
need to know the form it takes:

I some sequence of abstract symbols

Even if a message is long, its information content may be small, e.g.,
I could say

I “111111111111111111111111111111” or “30 1s”

or
I “110010010000111111011010101000100” or ??

so we need a better idea to express information

More to the point, if I only ever send the two messages:

1010101010110 and 1111111111111

I could replace them with X and Y
I I still have 2 symbols, but messages are shorter
I So information isn’t a function of the messages themselves!!!
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Uncertainty and Information and Surprise

Information cancels out uncertainty
I think of uncertainty as not knowing which symbol was transmitted
I when you receive the signal (information) the uncertainty is removed

Fundamentally, to understand information, we have to understand
uncertainty

I implicitly, the information of an event or message, depends on the
ensemble of all possible events, e.g., how much information is there in

F X = 1 in the context of X always equals 1?
F X = 1 when it could take many other values?

We might improve our intuition about information, if we think of
high-information content messages as being more surprising:

I e.g., how surprising is
F X = 1 in the context of X always equals 1?
F X = 1 when it could take many other values?

I so information should be a function of probability of the message.
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Can we come up with some axioms?

What properties should a metric of information have?
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Information

Lets think about information we get from an event

Say the event has probability p, and I tell you it occurs, then say I am
conveying information I (p).

Simple things
I its a metric, and so should be number.
I can’t have negative information

F I (p) ≥ 0

I a small change in p leads to a small change in I (p)
F I (p) is continuous

I we want it to differentiate between cases so

I (p) = I (q) only if p = q.
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Information

Lets think about information we get from a pair of events

Say the event has probability p, and I tell you it occurs, then say I am
conveying information I (p).

Events that are less likely convey more information
I e.g., if I pick a card from a deck and tell you it is an ACE it conveys

more than if I tell you its a SPADE
I i.e.

if p ≤ q, then I (p) ≥ I (q).
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Information

Lets think about information we get from an event

Say the event has probability p, and I tell you it occurs, then say I am
conveying information I (p).

What happens with two messages or events?
I e.g. imagine I tell you that

F a card is an ACE
F a card is a SPADE

I reasonable hypothesis is that if the two events/messages are
independent, then the information from the two adds, i.e.,

I (ACE OF SPADES) = I (ACE ) + I (SPADE )

I independent events have P(A ∩ B) = P(A)P(B) so

I (pq) = I (p) + I (q)

I Note that if we take p = q = 1, we get I (1.1) = I (1) + I (1), so
I (1) = 0.
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Information Axioms
For all p, q ∈ (0, 1)

1 Continuous, real-valued, non-negative function

2 Decreasing, and distinguishes values

if p < q, then I (p) > I (q).

3 Independent events have

I (pq) = I (p) + I (q)

Theorem

The only function I (·) which satisfies the above axioms is

I (p) = −k log(p), for some constant k .

Sort of makes sense as we need n = log(m) bits to represent a number of
size m (think of numbers as our possible messages), so if all numbers up
to m were equally possible, then ...
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Theorem

The only function I (·) which satisfies the above axioms is

I (p) = −k log(p), for some constant k .

Proof.

It is easy to show I (·) satisfies the axioms, so other direction:

1 As noted I (pq) = I (p) + I (q) implies I (1) = 0.

2 I (pq) = I (p) + I (q) also implies

I (pk) = k I (p),

which we can show by induction taking pk+1 = p × pk , so

I (pk+1) = I (p) + I (pk) = I (p) + k I (p) = (k + 1) I (p).
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Proof (Cont.)

1 Take a probability p, then for any positive integer r there exists a k
such that

pk+1 ≤ (1/2)r < pk

From monotonicity

I (pk+1) ≥ I (2−r ) > I (pk)

And from previous result

(k + 1) I (p) ≥ r I (2−1) > k I (p)

or
(k + 1)

r
≥ I (2−1)

I (p)
>

k

r
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Proof (Cont.)

(k + 1)

r
≥ I (2−1)

I (p)
>

k

r

and we also know from properties of logs and similar argument

(k + 1)

r
≥ log(2−1)

log(p)
>

k

r

So the two middle terms can differ by no more than 1/r , i.e.,∣∣∣∣ log(2−1)

log(p)
− I (2−1)

I (p)

∣∣∣∣ < 1

r

We fixed p so take the limit as r →∞ and the two must converge so

I (p) = C log(p)

and the constant C = I (1/2)/ log(1/2) is determined by I (1/2) which is
arbitrary, depending on units, and implies the base of the log.
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Can we come up with some axioms?

What properties should a metric of uncertainty have?

Obviously similar/related to information

Our idea of information of a message isn’t good enough because it is
about one message, and we need to deal with all of the possible
messages.

What else can we say?
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Uncertainty

Lets think from uncertainty viewpoint

Its a metric, and so should be real, non-negative number.

We are talking about (discrete) probabilistic systems, so lets make it
a function of the PMF.

uncertainty = H(p1, p2, . . . , pn)

I it doesn’t depend on the messages themselves

If two distributions are just reordered versions of each other, e.g.,
(q1, q2) = (p2, p1), then that shouldn’t change uncertainty.

Our measure should increase as “uncertainty” increases
I maybe we should make it continuous?
I are there any other rules?
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Can we come up with some axioms for uncertainty?

It should increase as “uncertainty” increases.

Consider a Bernoulli trial with Ω = {0, 1}, and probability p of
success.

I we are least uncertain when p = 0 or 1 because the outcome is fixed.
I most uncertain when p = 1/2
I so we need a function of (p, 1− p) with its min for p = 0 or 1, and

max for p = 1/2
I also H(p, 1− p) = H(1− p, p) so it has symmetry
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Can we come up with some axioms for uncertainty?

It should increase as “uncertainty” increases.

If we have uniform distributions with M possibilities pi = 1/M, then
uncertainty should increase as M increases as there are more possible
outcomes.

I from previous discussion of information, it probably makes sense for it
to increase logarithmically

I we can get that again from assuming the distribution is uniform over
{1, ...,M} × {1, ..., L}, and noting there are ML possible events, but if
we condition on one there are M or L left, and so we get the same type
of sum we saw for information:

f (ML) = f (M) + f (L)
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Can we come up with some axioms for uncertainty?
The grouping axiom

Imagine an experiment with M outcomes and PMF pi

I divide the outcomes into two groups

A = {x1, . . . , xr} and B = {xr+1, . . . , xM}

I where

P(A) =
r∑

i=1

pi and P(B) =
M∑

i=r+1

pi

We could conduct the experiment two ways:
I Randomly draw X using the PMF pi
I Randomly draw Y using P(A) and P(B) to determine the group and

then, draw from the groups:
F if Y = A, then using qi = P(X = xi |Y = A) = pi/P(A), for i ∈ A
F if Y = B, then using qj = P(X = xj |Y = B) = pj/P(B), for j ∈ B
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Can we come up with some axioms for uncertainty?
The grouping axiom

Two equivalent ways to do the experiment
I so must have the same uncertainty

If we revealed the group selected, the uncertainty would be
I if Y = A, it would be H(q1, . . . , qr )
I if Y = B, it would be H(qr+1 . . . , qM)

The expected uncertainty of when the grouping is specified is

P(A)H(q1, . . . , qr ) + P(B)H(qr+1 . . . , qM)

The uncertainty about the grouping is

H
(
P(A),P(B)

)
Total uncertainty of grouped experiment

Hgroup = H
(
P(A),P(B)

)
+P(A)H(q1, . . . , qr )+P(B)H(qr+1 . . . , qM)

So the uncertainty calculated two ways should be

H(p1, . . . , pM) = Hgroup
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Entropy

The only function that satisfies all of these axioms is

H(p1, . . . , pn) = −
∑
i

pi log pi ,

I we should be able to see that it is the expectation of the information
function we defined earlier

We call this the Shannon entropy because
I given different axioms we might come up with a different function
I entropy has a long history, but Shannon was the first to use it in the

context of information
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Further reading I

Robert B. Ash, Information theory, Dover, 1995, Reprinted from John Wiley, 1965.

Gjerrit Meinsma, Data compression & information theory, Mathematisch cafe,
2003, wwwhome.math.utwente.nl/~meinsmag/onzin/shannon.pdf.
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