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Information, defined intuitively and informally, might be
something like ’uncertainty’s antidote.’

Brian Christian,
The Most Human: What Talking with Comput-
ers Teaches Us About What It Means to Be Alive
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Section 1

Entropy: properties
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Simple Properties

1 Axiomatic properties hold: e.g.,
I H(X ) ≥ 0
I H(·) is a function of probabilities, not the values of X .

2 0 ≤ H(X ) ≤ log |Ω|
I zero iff X is deterministic
I log |Ω| iff X is uniform (we’ll prove this in a minute)

3 For a Bernoulli RV with p = 1/2, we have H(p) = 1 bit
1 i.e., this defines the units of information

4 H(X |Y ) 6= H(Y |X )
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Entropy: properties

Simple Properties

We can do entropy in any base, but unit change:

� base 2: units are bits

� base e: units are nats

Entropy Chain Rule

Theorem (Chain Rule)

H(X ,Y ) = H(X ) + H(Y |X ) = H(Y ) + H(X |Y ).

Proof.

p(x , y) = p(x)p(y |x)

log p(x , y) = log p(x) + log p(y |x)

E [log p(x , y)] = E [log p(x)] + E [log p(y |x)] .

by linearity of expectations, and similarly for the second form.
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Entropy Chain Rule



Entropy Chain Rule: Corollaries

Theorem (Chain Rule Corollary)

H(X ,Y |Z ) = H(X |Z ) + H(Y |X ,Z )

Don’t confuse with

H(Y , X |Z ) = H(X |Z ) + H(Y |X , Z )

Theorem (Chain Rule Corollary)

H(X )− H(X |Y ) = H(Y )− H(Y |X ).

But remember that H(X |Y ) 6= H(Y |X ) in general.
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Entropy Chain Rule: Corollaries

Entropy Chain Rule: General form

Theorem (Chain Rule)

Let X1,X2, . . . ,Xn have joint PMF p(x1, x2, . . . , xn), then

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1).

Proof.

Just use repeated applications of the two-variable chain rule, or prove
directly in the same manner as the two-variable rule.

Example:

H(X1,X2,X3) = H(X1) + H(X2|X1) + H(X3|X2,X1).
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Relative Entropy Chain Rule

Theorem (Chain Rule)

D
(
p(x , y)

∥∥q(x , y)
)

= D
(
p(x)

∥∥q(x)
)
− D

(
p(y |x)

∥∥q(y |x)
)

Proof.

Similar to previous two-variable proof.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 9, 2013 9 / 22

Relative Entropy Chain Rule

Theorem (Chain Rule)

D
(
p(x , y)

∥∥q(x , y)
)

= D
(
p(x)

∥∥q(x)
)
− D

(
p(y |x)

∥∥q(y |x)
)

Proof.

Similar to previous two-variable proof.

2
0
1
3
-1
0
-0
9

Information Theory

Entropy: properties

Relative Entropy Chain Rule

Relative Entropy Properties

Theorem

D
(
p
∥∥q
)
≥ 0

with equality only iff p(x) = q(x) for all x.

Proof.

−D
(
p
∥∥q
)

= E

[
− log

p(X )

q(X )

]
≤ − log E

[
p(X )

q(X )

]
,

by Jensen’s inequality, as − log is strictly convex, and so equality arises
only when p/q is a constant (in this case 1 when p = q for all x). Next

−D
(
p
∥∥q
)
≤ log E

[
q(X )

p(X )

]
= log

∑
x

p(x)
q(x)

p(x)
= log

∑
x

q(x) = log 1 = 0
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Relative Entropy Properties

We can prove the result even more directly using Gibbs’ Inequality (or the

related log-sum inequality).



Corollary

Theorem

H(X ) ≤ log |Ω|.

Proof.

Take distributions p(x) and compare it to the uniform distribution
u(x) = 1/|Ω|:

D(p‖u) =
∑
x

p(x) log
p(x)

u(x)

= −
∑
x

p(x) log u(x) +
∑
x

p(x) log p(x)

= − log u
∑
x

p(x)− H(X )

= log |Ω| − H(X )

And we already know that D(p‖u) ≥ 0.
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Corollary

Convexity of relative entropy

Theorem

The relative entropy D(p‖q) is a convex function of (p, q), i.e., for two
pairs of distributions (p(1), q(1)) and (p(2), q(2)).

D
(
λp(1) + (1− λ)p(2)

∥∥∥λq(1) + (1− λ)q(2)
)

≤ λD
(
p(1)

∥∥q(1)
)

+ (1− λ)D
(
p(2)

∥∥q(2)
)

for all 0 ≤ λ ≤ 1.

Proof.

The proof is just another application of Jensen’s (or Gibbs’) inequality, but
is a bit messy, so I leave it to the reader.
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Corollary: concavity of H

Theorem

The entropy H(X ) = H(p) is a concave function of p, i.e.,

H
(
λp(1) + (1− λ)p(2)

)
≥ λH(p(1)) + (1− λ)H(p(2)).

Proof.

As before
H(p) = log |Ω| − D(p‖u),

so the result follows directly from the convexity of D.

Intuitively this means that if we mixed two random variables, i.e., we take
a Bernoulli trial with probability λ, and use it to select either X1 or X2, the
resulting uncertainty is larger than the weighted mixture of the two
uncertainties (as you would expect, I hope)
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Corollary: concavity of H

Conditioning reduces entropy

As we might expect, conditioning on Y (i.e., saying we know Y ) reduces
the uncertainty about X , unless they are independent.

Theorem

H(X |Y ) ≤ H(X ),

with equality only when X and Y are independent.
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Conditioning reduces entropy

Proof.

Given p(x , y) define q(x , y) = pX (x)pY (y), where pX (x) and pY (y) are
the marginal distributions of X and Y respectively. Now define

I (X ; Y ) = D
(
p(x , y)

∥∥q(x , y)
)

= E

[
log

p(X |Y )

pX (X )

]
,

By definition of conditional probabilities

E

[
log

p(X ,Y )

pX (X )pY (Y )

]
= E

[
log

p(X |Y )

pX (X )

]
= E [log p(X |Y )]−E [log pX (X )] ,

So
I (X ; Y ) = −H(X |Y ) + H(X ),

but we also know that I (X ; Y ) is defined in terms of relative entropy, and
hence I (X ; Y ) ≥ 0, and hence the result.
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Conditioning reduces entropy

The quantity I (X ; Y ) is called the mutual information, and we will get to
that in a moment. In particular, we’ll use the result

I (X ; Y ) = −H(X |Y ) + H(X ),

again so keep you eye on it.

Section 2

Mutual information
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Motivation

We created an “information” metric before, based on a single
probability, but found that entropy was a more useful idea.

Now lets return to trying to say something useful about information

The mutual information is a measure of the information that we learn
about one random variable from another.
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Motivation

Mutual Information

Define: mutual information

I (X ; Y ) =
∑
x

∑
y

p(x , y) log
p(x , y)

pX (x)pY (y)

= D
(
p(x , y)

∥∥q(x , y)
)

= E

[
log

p(X |Y )

p(X )

]
,
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Relationship between entropy and mutual information

We already showed that

I (X ; Y ) = H(X )− H(X |Y ).

So the mutual information is the reduction in uncertainty in X given
knowledge of Y .

By symmetry
I (X ; Y ) = H(Y )− H(Y |X ).

Also the “self-information”

I (X ; X ) = H(X )− H(X |X ) = H(X ).

which is the idea we started with, that information and uncertainty
about a random variable are really the same.
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Relationship between entropy and mutual information

Mutual Information Properties

Mutual Information is non-negative, and is zero, iff X and Y are
independent (see proof of previous theorem)

Mutual Information has a conditional form (see [CT91, p.22] for
details.)

Mutual Information has a chain rule (see [CT91, p.22] for details.)
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Assignment

There are lots of practice problems in [CT91, Chapter 1], which is
available in electronic form in our Library. I recommend you have a go, but
I won’t mark these.

The assignment is to calculate the entropy of Morse code symbols, given
standard frequencies of English letters.
Hints:

Remember Morse code really has four symbols:
I dot
I dash
I letter-break
I word-break

Model the frequencies of word-breaks as well as just letters.
I you may need to make your own measurements of text – lots is

available, e.g., at http://www.gutenberg.org/
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Assignment

Reading in text can be done in Matlab, but you may find some easier
approaches. For instance, in R http://www.r-bloggers.com/

text-mining-the-complete-works-of-william-shakespeare/

I personally prefer to use Perl for tasks like this, and I can pretty much

guarantee that a Perl implementation will be faster to run, and faster to

write (if you learn a bit about Perl), but its up to you.

Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.
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