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Motivating problem

Work expands so as to fill the time available for its comple-
tion.

Parkinson’s law

Data expands to fill the space available for storage.

Parkinson’s law of disk space

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 4 / 20

http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/
http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/


Compression

We want to “compress”

Text

Audio

Pictures

Video

...

Often we want lossless compression (i.e., data can be decompressed with
no loss).
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Many modern compression algorithms are lossy. They allow loss of
“perceptually irrelevant data”, i.e., data that doesn’t affect our
perception (hopefully) of the media. Examples include:

� JPEG image compression

� MP3 Audio compression

� Various video codecs

On the first day of his class in Information Theory, a new
student was confused by the Professor, who would call out a
number, thence followed by enraptured laughter.
The student asked what was going on, and eventually was
told “We’ve assigned each joke a number, and so instead of
wasting time telling the joke, we just give the number.”
The student, catching on, called out 42, but received only a
polite smile from a few of the others. He was again confused,
and asked why they didn’t laugh. One of the others said,
with embarrassment, “Its all in the way you tell it”.
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Stupid compression

Give each document a (short) number
I to decompress, just give the document corresponding to the number

back

Has some problems
I doesn’t generalise (only works for pre-described documents)
I algorithm effectively stores the content
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Stupid compression

Universal compression

Ideally, we would have a universal compression algorithm such that

bytes after compression

bytes before compression
≤ α

for some 0 < α < 1 (and as small as possible) for every possible file.
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Universal compression

Theorem

There is no lossless compression algorithm that strictly reduces every file.

Proof.

Consider there are 2N files with N bits.
There are 20 + 21 + · · ·+ 2N−1 = 2N − 1 files with less than N bits.
By the pigeonhole principle we don’t have enough shorter files to represent
all the files of length N, so it isn’t possible to compress all of them using
the one algorithm.
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Universal compression

Theorem

There is no lossless compression algorithm that strictly reduces every file.

What about common cases?

gzip, bzip, zip, ...

maybe they don’t work on all files

but work pretty well most of the time

They exploit the structure of typical text/image/...
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Text Compression

Language is made up of words
I words are repeated
I words have different frequencies

Top ten (in TV): you, i, I, to, the, a, and, that, it, of, me

Varies by corpus
I genre
I writer

We could give a shorter code to common words (or patterns)
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http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists

http://en.wiktionary.org/wiki/Wiktionary:

Frequency_lists/TV/2006/1-1000

Simple problem

We have a “text” made up of a series of messages, or symbols

a, b, c , d

We know the PMF of the messages

P(a),P(b),P(c),P(d)

How could we code the message to compress it?
I lets write our code in binary
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Example

Code

a ↔ 00

b ↔ 01

c ↔ 10

d ↔ 11

Average number of bits per word is 2
Can you do better if you know the PMF?
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P(a) = 1/2

P(b) = 1/4

P(c) = 1/8

P(d) = 1/8
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Decodability

We need to be able to decompress the data

Obviously we need 1:1 mapping from words to codes
I but really we need 1:1 mapping from messages to coded version

Remember that “word-break” would have to be either
I an extra symbol
I implicit in the code
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Decodable code

End of codes indicated by a 1

a ↔ 01

b ↔ 001

c ↔ 0001

d ↔ 00001

Average message length

bits per word = 2
1

2
+ 3

1

4
+ 4

1

8
+ 5

1

8
=

23

8

We know we can do better, but how much?
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Example

a ↔ 0

b ↔ 10

c ↔ 110

d ↔ 111

Decodable, because any sequence we convert back to its message

Compresses, because more common words have shorter codes

bits per word = 1
1

2
+ 2

1

4
+ 3

1

8
+ 3

1

8
=

7

4

I average compression from 2→ 7/4

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 17 / 20

Example

a ↔ 0

b ↔ 10

c ↔ 110

d ↔ 111

Decodable, because any sequence we convert back to its message

Compresses, because more common words have shorter codes

bits per word = 1
1

2
+ 2

1

4
+ 3

1

8
+ 3

1

8
=

7

4

I average compression from 2→ 7/4

2
0
1
3
-0
9
-1
8

Information Theory

Compression

Example

Simple question

Is there a fundamental limit to lossless compression?
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What was the entropy here?



More complex question

How would you come up with a code

given the PMF?

just given the data?

How do ensure the code is decodable?
Are there other redundancies in data that we can exploit and how would
we find them efficiently?
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Further reading I

Gjerrit Meinsma, Data compression & information theory, Mathematisch cafe,
2003, wwwhome.math.utwente.nl/~meinsmag/onzin/shannon.pdf.
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