Information Theory and Networks

Lecture 8: Decodability

Matthew Roughan <matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > September 18, 2013

September 18, 2013 3 / 20

There are 10 types of people in the world: those who understand binary, and those who don't

Matthew Roughan (School of Mathematical :

Part I Decodability September 18, 2013 2/20

Information Theory 81-60-81-60	There are 20 types of people in the world: those who under- ticed theory, and filter who don't

Morse code

Morse code has a problem

- its not really a binary code because we need letter and word separators
 - ▶ e.g., to tell the difference between

$$an = \cdot - p = \cdot - -$$

- we end up with 4 "symbols", and that
 - complicates the transmission and reception processes
 - reduces the efficiency
 - ▶ introduces a source of errors
- In general we want codes that are decodable without adding extra symbols
 - e.g., true binary codes

<ロ > → □ > → □ > → □ > → □ = → ○ Q ()

atthew Roughan (School of Mathematical

September 18, 2013

Definitions [CT91, pp.78-81]

Definition (Source code)

atthew Roughan (School of Mathematical !

A source code C for a random variable X is a mapping from Ω , the range of X to \mathcal{D}^* (the set of all finite length strings of symbols from the alphabet \mathcal{D}).

Our code "alphabet" is made up of symbols from \mathcal{D} . If the size of this set is $D = |\mathcal{D}|$ then we call this a D-ary code.

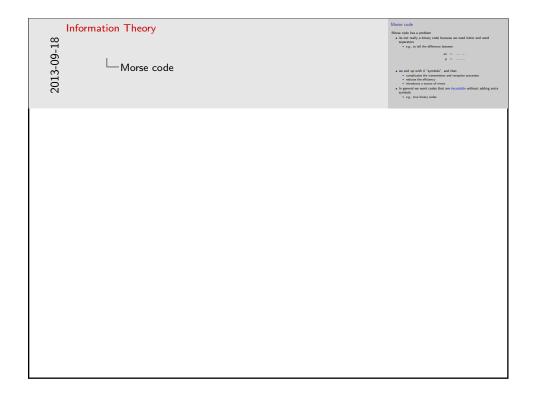
If we only allowed single symbols in the output, then this would be the range of $C(\cdot)$, but usually we allow finite strings in our "codewords".

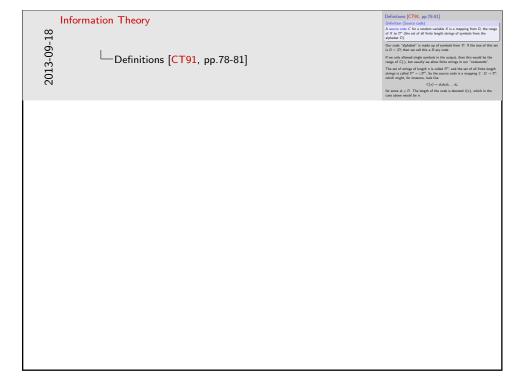
The set of strings of length n is called \mathcal{D}^n , and the set of all finite length strings is called $\mathcal{D}^* = \cup \mathcal{D}^n$, So the source code is a mapping $\mathcal{C}: \Omega \to \mathcal{D}^*$, which might, for instance, look like

$$C(x) = d_1 d_2 d_3 \dots d_n$$

for some $d_i \in \mathcal{D}$. The length of the code is denoted $\ell(x)$, which in the case above would be n.

September 18, 2013





Definitions [CT91, pp.78-81]

Definition (Non-singular)

A code is said to be non-singular if every element of the range of X maps into a different string in \mathcal{D}^* , i.e.,

$$x_i \neq x_i \Rightarrow C(x_i) \neq C(x_i)$$

Non-singularity is a necessary condition for decodability

• otherwise we can't decode a single symbol uniquely

but it isn't sufficient to guarantee decodability of a sequence, at least not without an extra "separator" symbol, which is inefficient.

<ロ > → □ > → □ > → □ > → □ = → ○ Q ()

atthew Roughan (School of Mathematical

September 18, 2013

Definitions [CT91, pp.78-81]

Definition (Extension)

atthew Roughan (School of Mathematical S

The extension C^* of a code C is the mapping from finite length strings Ω^* to finite length strings \mathcal{D}^* defined by

$$C^*(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n)$$

where $C(x_i)C(x_i)$ indicates concatenation of codewords.

Definition (Uniquely decodable)

A code is called uniquely decodable if its extension is non-singular.

Information Theory 2013-09-18 Definitions [CT91, pp.78-81]

For instance, Morse code is clearly non-singular (by construction), but is not prefix-free (for instance the code for a = - is a prefix of the code for p = ---), and without extra symbols Morse code is not uniquely decodable.

Definitions [CT91, pp.78-81]

Definition (Prefix-free codes)

A code is called a prefix-free code or an instantaneous code if no codeword is a prefix of any other codeword.

For Example:

X	Prefix-free code	
1	0	
2	10	
3	110	
4	111	

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 夕 へ ○

September 18, 2013 8 / 20

Prefix-free codes

Matthew Roughan (School of Mathematical

Theorem

Prefix-free codes are uniquely decodable (and in fact can be decoded without reference to the future codewords).

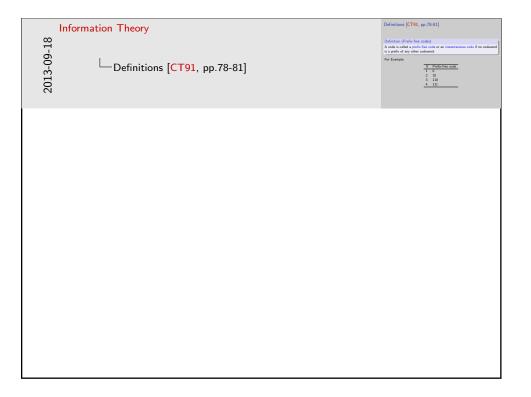
Proof.

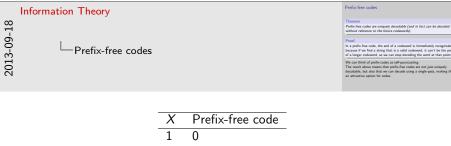
In a prefix-free code, the end of a codeword is immediately recognisable because if we find a string that is a valid codeword, it can't be the prefix of a longer codeword, so we can stop decoding the word at that point.

We can think of prefix-codes as self-punctuating.

The result above means that prefix-free codes are not just uniquely decodable, but also that we can decode using a single-pass, making them an attractive option for codes.

September 18, 2013





10 110 111

Then the only interpretation of

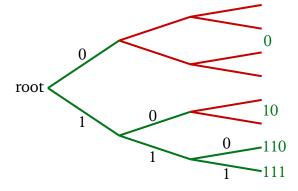
010101110110

is

0 - 10 - 10 - 111 - 0 - 110 = 1, 2, 2, 4, 1, 3

Prefix-free codes

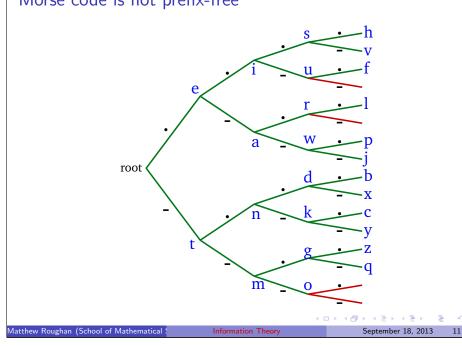
We can represent codewords as a *D*-ary tree: e.g., for binary codes



For a prefix-free code, no codeword can be an ancestor of another.

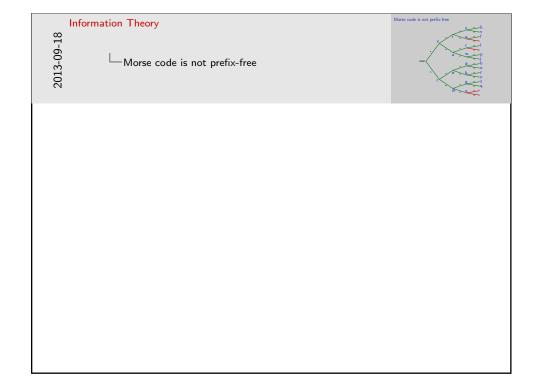
 ⟨Chool of Mathematical \$
 Information Theory
 September 18, 2013
 10 / 20

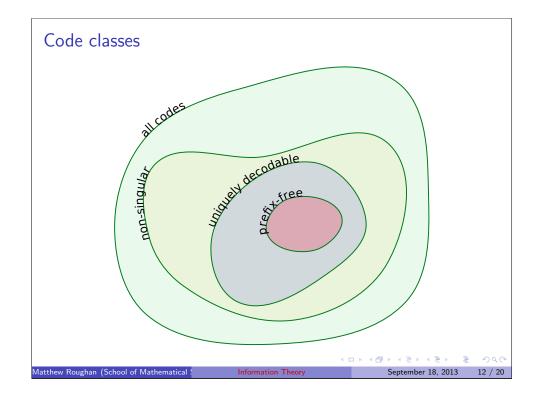
Morse code is not prefix-free

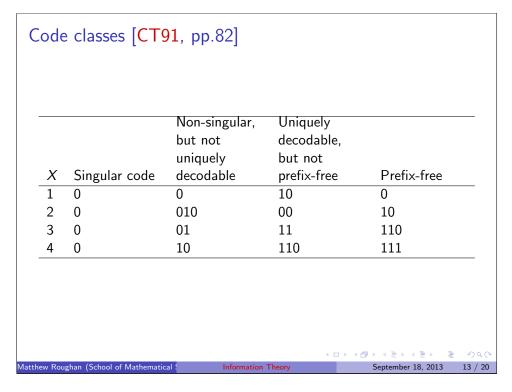


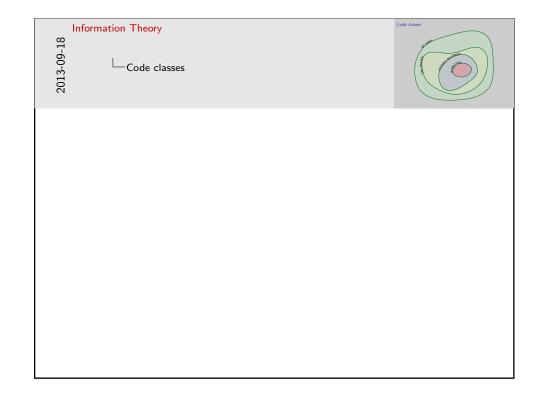
Information Theory Prefix-free codes We can represent codewords as a Dury tree e.g. for binary codes We can represent codeword can be an accounted on the Dury tree e.g. for binary codes For a purity-free codes

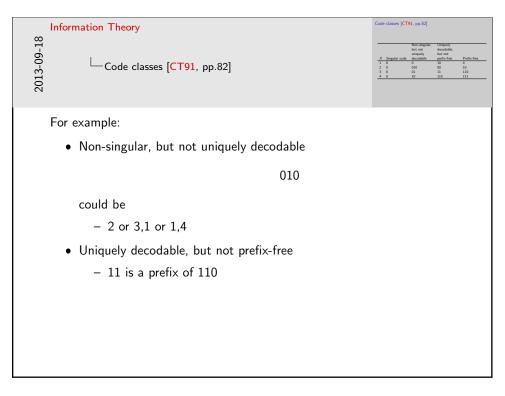
- In a *D*-ary tree, each node has *D* children.
- All possible codewords can be represented as a node in such a tree
 - each codeword is a leaf on the tree
 - the code is given by the path through the tree
- For prefix-free, and codeword eliminates all its descendents as possibilities.











Variable vs fixed length codes

- If we fix the length of the codewords, then, its easy to determine the boundaries
 - such codes are implicitly prefix free (as long as they are non-singular)
- But variable length codes can be more efficient
 - e.g., use shorter codes for more common symbols
 - ▶ now we have to make sure they are uniquely decodable and the easiest thing is to ensure they are prefix free

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 夕 へ ○

September 18, 2013 14 / 20

Kraft inequality

Theorem (Kraft inequality)

There exists a D-ary prefix-free code with codeword lengths $\ell_1, \ell_2, \dots, \ell_m$, iff the Kraft inequality

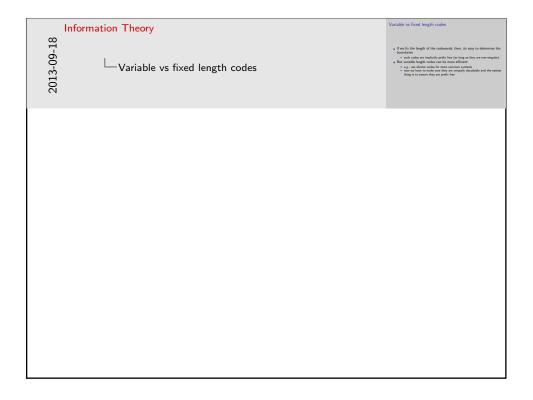
$$\sum_{k=1}^{m} D^{-\ell_k} \le 1,$$

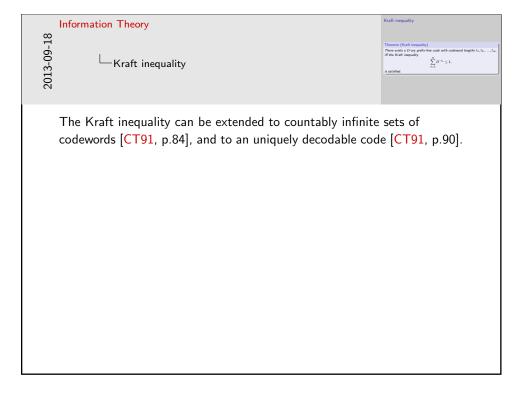
Information Theory

is satisfied.

Matthew Roughan (School of Mathematical S

September 18, 2013





Kraft inequality example

Χ	Prefix-free code	length ℓ_i
1	0	1
2	10	2
3	110	3
4	111	3

its a binary code, so D = 2, so

$$\sum_{k=1}^{m} D^{-\ell_k} = 2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} = 1.$$

atthew Roughan (School of Mathematical

ormation Theory

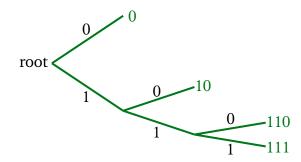
September 18, 2013

6 / 20

Prefix-free codes

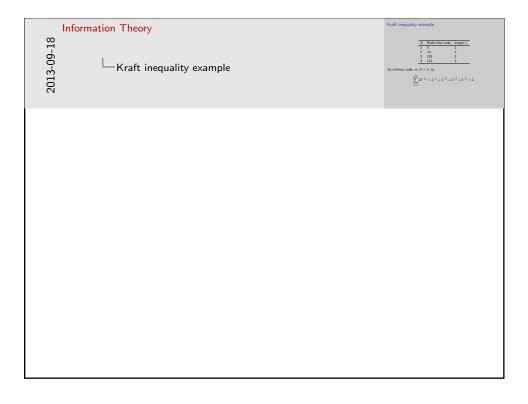
Matthew Roughan (School of Mathematical :

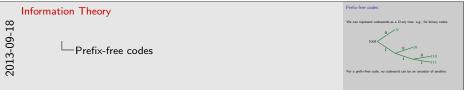
We can represent codewords as a *D*-ary tree: e.g., for binary codes



For a prefix-free code, no codeword can be an ancestor of another.

ロト 4回ト 4 草ト 4 草ト 草 りくぐ





- In a *D*-ary tree, each node has *D* children.
- All possible codewords can be represented as a node in such a tree
 - each codeword is a leaf on the tree
 - the code is given by the path through the tree
- For prefix-free, and codeword eliminates all its descendents as possibilities.

Kraft proof

Kraft inequality \Rightarrow .

Consider the D-ary tree corresponding to a prefix-free code. Let $\ell_{\rm max}$ be the longest codeword. The tree has $D^{\ell_{\rm max}}$ possible nodes at level $\ell_{\rm max}$ (but not all are actual codewords).

The kth codeword is at level ℓ_k , and has $D^{\ell_{\max}-\ell_k}$ descendents at level ℓ_{\max} , and each of these sets of descendents is disjoint, and so the total number of such descendents can't be greater than the possible nodes at level ℓ_{\max} , i.e.,

$$\sum_{k=1}^m D^{\ell_{\max}-\ell_k} \le D^{\ell_{\max}}$$

and (dividing by $D^{\ell_{\max}}$) the Kraft inequality must hold for any prefix-free code.

latthew Roughan (School of Mathematical

Information I heor

September 18, 2013

18 / 20

Kraft proof

Kraft inequality \Leftarrow .

Conversely, given a set of codeword lengths $\ell_1, \ell_2, \dots, \ell_m$ which satisfy the inequality, we can always construct a D-ary tree corresponding to a prefix-free code. The construction is as follows:

- WLOG order the lengths so that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_m$
- There are D^{ℓ_1} possible nodes at depth ℓ_1 suitable for the first code.
- Assume the first i codewords have been chosen successfully, and we now want to choose a codeword of length ℓ_{i+1} . It can't be a descendent of any of the previous codewords, so we have eliminated

$$\sum_{k=1}^{i} D^{\ell_{i+1}-\ell_k},$$

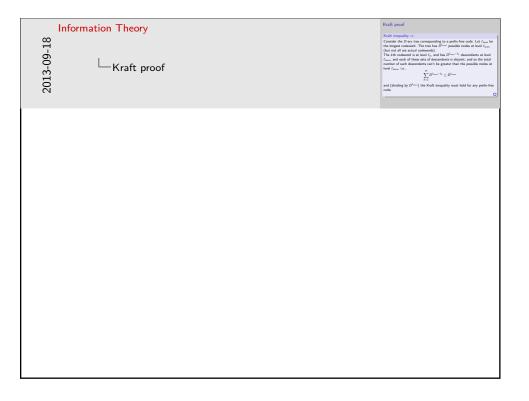
nodes at level ℓ_{i+1} of the tree, but by the Kraft inequality we know that this must leave at least one possible choice.

auta Bardan (Calada)

LC 2 TI

September 18, 2013

3 20 /



Thomas M. Cover and Joy A. Thomas, *Elements of information theory*, John Wiley and Sons. 1991.

Raymond W. Yeung, Information theory and network coding, Springer, 2010.