
Information Theory and Networks
Lecture 9: Compression and Coding

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/

Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide

September 18, 2013

http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/
http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/


Part I

Compression and Coding

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 2 / 27



He can compress the most words into the smallest ideas of
any man I ever met.

Abraham Lincoln

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 3 / 27



Optimal codes

Efficiency of a code is measured by its expected length, i.e.,

L = E [`(X )] =
m∑

k=1

`kpk ,

where pk is the probability of the kth symbol of Ω, and `k is the
length of the kth codeword.

Optimal codes minimise the expected length
I more probable symbols get shorter codewords
I can we be a bit more formal about this?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 4 / 27



Optimal codes

Problem

Minimise
L =

∑
pk`k

over all integers `1, `2, . . . , `m satisfying the Kraft inequality∑
D−`k ≤ 1.

Ignoring integer constraints on `i , and assuming the bound is satisfied,
then we can solve using a Lagrange multiplier, i.e., minimise

J =
∑

pk`k + λ
[∑

D−`k − 1
]
.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 5 / 27



Optimal codes
Minimise

J =
∑

pk`k + λ
[∑

D−`k − 1
]
.

Take the derivative with respect to `k :

∂J

∂`k
= pk − λD−`k loge D = 0.

Hence
D−`k =

pk

λ loge D

The (equality) constraint gives

1 =
∑

D−`k =

∑
pk

λ loge D
=

1

λ loge D

so λ = 1/ loge D, and hence D−`k = pk , and so the optimal code lengths
are

`k = − logD pk

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 6 / 27



Optimal codes

So if we don’t mind non-integer code lengths, the best we can do is to
take:

`k = − logD pk

In this case
L =

∑
k

pk`k = −
∑
k

pk logD pk = HD(X )

In reality, the codeword lengths must be integers, so this is a
lower-bound on the minimum expected codeword length.

We will achieve the bound iff pk = D−`k for some integers `k

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 7 / 27



Optimal codes

Theorem

The expected length L of any prefix-free code for a random variable X is
bounded below by the entropy of X , i.e.,

L ≥ HD(X )

with equality iff D−`i = pi for some integers `i .

Proof.

See above, or [CT91, p.86] for a more technical proof.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 8 / 27



Upper Bound on Optimal Codes

Theorem

The expected length L of the optimal code for a random variable X is
bounded below by the entropy of X , i.e.,

HD(X ) ≤ L < HD(X ) + 1.

Proof.

Take `∗k = dlogD (1/pk)e. These satisfy the Kraft inequality:

∑
D
−
⌈
logD

(
1
pk

)⌉
≤
∑

D
− logD

(
1
pk

)
=
∑

pk = 1.

And − logD pk ≤ `∗k < − logD pk + 1 so multiplying by pk and summing

HD(X ) ≤ L∗ < HD(X ) + 1.

The optimal code can only be better than L∗, but not better than
HD(X ).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 9 / 27



Shannon Code

Call the code with

`∗k =

⌈
logD

(
1

pk

)⌉
a Shannon Code.

Its seems (from previous slide) like this might be a good choice

Counter-example: D = 2 (binary code)

p0 = 0.999 ↔ `0 = 1

p1 = 0.001 ↔ `1 = 10

So we might choose the binary code 0 and 1000000000, but we know
that 0 and 10 would be better.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 10 / 27



Practical optimal coding

So now we have some idea of the best we can theoretically do

How close can we get, in practise?

Is there a reasonable procedure for getting there?

Huffman coding!

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 11 / 27



Binary Huffman Coding

1 We are building a tree

2 Start with each symbol in Ω as a leaf of the tree.
3 Repeat rule

1 merge the two current nodes with the lowest probability masses to get
a new node of the tree

4 The root is when we get a probability 1.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 12 / 27



Huffman coding example 1 [CT91, p.93]

X Probability

a 0.25

0.25 0.25 0.55 1.0

b 0.25

0.25 0.45 0.45

c 0.2

0.2

d 0.15

0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 13 / 27



Huffman coding example 1 [CT91, p.93]

X Probability

a 0.25 0.25

0.25 0.55 1.0

b 0.25 0.25

0.45 0.45

c 0.2 0.2

d 0.15 0.3

0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 13 / 27



Huffman coding example 1 [CT91, p.93]

X Probability

a 0.25 0.25 0.25

0.55 1.0

b 0.25 0.25 0.45

0.45

c 0.2 0.2

d 0.15 0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 13 / 27



Huffman coding example 1 [CT91, p.93]

X Probability

a 0.25 0.25 0.25 0.55

1.0

b 0.25 0.25 0.45 0.45

c 0.2 0.2

d 0.15 0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 13 / 27



Huffman coding example 1 [CT91, p.93]

X Probability

a 0.25 0.25 0.25 0.55 1.0

b 0.25 0.25 0.45 0.45

c 0.2 0.2

d 0.15 0.3 0.3

e 0.15

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 13 / 27



Huffman coding example 1

1

root

1

01

0

0

0

1

01
10
11

000
001

Read the codes from the root to the end point.

Assign 0 to the branch with higher probability at each node.
I this choice is arbitrary, but will mean we get consistent results

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 14 / 27



Huffman coding example 1

X Probability Codeword

a 0.25 01

b 0.25 10

c 0.2 11

d 0.15 000

e 0.15 001

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 15 / 27



Huffman coding example 2 [Yeu10, p.89]

X Probability Code

a 0.35

0.35 0.35 0.6 1.0 00

b 0.1

0.25 0.25 010

c 0.15

011

d 0.2

0.2 0.4 0.4 10

e 0.2

0.2 11

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 16 / 27



Huffman coding example 2 [Yeu10, p.89]

X Probability Code

a 0.35 0.35

0.35 0.6 1.0 00

b 0.1 0.25

0.25 010

c 0.15

011

d 0.2 0.2

0.4 0.4 10

e 0.2 0.2

11

0

1

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 16 / 27



Huffman coding example 2 [Yeu10, p.89]

X Probability Code

a 0.35 0.35 0.35

0.6 1.0 00

b 0.1 0.25 0.25

010

c 0.15

011

d 0.2 0.2 0.4

0.4 10

e 0.2 0.2

11

0

1
0

1

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 16 / 27



Huffman coding example 2 [Yeu10, p.89]

X Probability Code

a 0.35 0.35 0.35 0.6

1.0 00

b 0.1 0.25 0.25

010

c 0.15

011

d 0.2 0.2 0.4 0.4

10

e 0.2 0.2

11

0

0
1

1
0

1

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 16 / 27



Huffman coding example 2 [Yeu10, p.89]

X Probability Code

a 0.35 0.35 0.35 0.6 1.0

00

b 0.1 0.25 0.25

010

c 0.15

011

d 0.2 0.2 0.4 0.4

10

e 0.2 0.2

11

0 0

0
1

1
0

1

1

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 16 / 27



Huffman coding example 2 [Yeu10, p.89]

X Probability Code

a 0.35 0.35 0.35 0.6 1.0 00

b 0.1 0.25 0.25 010

c 0.15 011

d 0.2 0.2 0.4 0.4 10

e 0.2 0.2 11

0 0

0
1

1
0

1

1

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 16 / 27



Huffman coding example 3 [CT91, p.93]

X Probability Code

a 0.25

0.25 1.0 1

b 0.25

0.25 2

c 0.2

0.5 00

d 0.15

01

e 0.15

02

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 17 / 27



Huffman coding example 3 [CT91, p.93]

X Probability Code

a 0.25 0.25

1.0 1

b 0.25 0.25

2

c 0.2 0.5

00

d 0.15

01

e 0.15

02

0

1
2

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 17 / 27



Huffman coding example 3 [CT91, p.93]

X Probability Code

a 0.25 0.25 1.0

1

b 0.25 0.25

2

c 0.2 0.5

00

d 0.15

01

e 0.15

02

1

2

0
0

1
2

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 17 / 27



Huffman coding example 3 [CT91, p.93]

X Probability Code

a 0.25 0.25 1.0 1

b 0.25 0.25 2

c 0.2 0.5 00

d 0.15 01

e 0.15 02

1

2

0
0

1
2

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 17 / 27



Examples

Example D H(X ) HD(X ) Average Code length

1 2 2.285 2.285 2.300
2 2 2.202 2.202 2.250
3 3 2.285 1.442 1.500

We can see that Huffman coding is doing a pretty good job of finding a
code that is close to the optimal code (the entropy). Is that a general rule?

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 18 / 27



Huffman coding optimality

Theorem

Huffman coding is optimal (in the sense that the expected length of its
codewords is at least as good as any other code).

To do the proof, we need a couple of lemmas: based on the proof in
[Yeu10, pp.90-92].

We’ll do the proof for binary codes, but it is obviously extendable to D-ary
codes.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 19 / 27



Huffman coding optimality

Lemma

In an optimal code, shorter codewords are assigned to larger probabilities.

Proof.

Consider 1 ≤ i < j ≤ m such that pi > pj . Assume that in a code, the
codewords ci and cj are such that `i > `j , i.e., a shorter codeword is
assigned to a smaller probability. then by exchanging ci and cj , the
expected length of the code is changed by

(pi`j + pj`i )− (pi`i + pj`j) = (pi − pj)(`j − `i ) < 0,

since pi > pj and `i > `j . In other words, the code can be improved and
therefore is not optimal.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 20 / 27



Huffman coding optimality

Lemma

There exists an optimal code in which the codewords assigned to the two
smallest probabilities are siblings (in the code tree), i.e., the two
codewords have the same length and they differ only in the last symbol.

Proof.

From the last lemma, the codeword cm assigned to pm is the longest.
Note also that the sibling of cm cannot be a prefix for any other code (as
then that code would be longer).

We claim that the sibling of cm must be a codeword. To see this, assume
it is not. Then replace cm by its parent to improve the code, because the
length of codeword would be reduced by 1, while all the other codewords
remain unchanged. Hence the sibling must be a codeword.

If the sibling of cm is assigned to pm−1 then the code has the desired
property. If it isn’t, then we can perform a swap (as above) that won’t
increase the average code lengths so that it is.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 21 / 27



Huffman coding optimality

Lemma

If we merge two siblings in a code tree, i.e., we replace the codes ci and cj
of the siblings by a common parent (call it cij), then we obtain a reduced
code tree, and the probability of cij is pi + pj , and the expected length of
the reduced code L′ is related to that of the original code L by

L′ = L− (pi + pj)

Proof.

Everything remains the same, except the codes ci and cj are replaced by
one code cij , which has length 1 less than the two original codes, so the
difference in expected lengths is

L− L′ = (pi`i + pj`j)− (pi + pj)(`i − 1)

= (pi`i + pj`i )− (pi + pj)(`i − 1) = pi + pj

(as `i = `j because ci and cj are siblings).
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 22 / 27



Huffman coding optimality

Theorem

Huffman coding is optimal (in the sense that the expected length of its
codewords is at least as good as any other code).

Proof.

The lemma above states that optimal code in which cm and cm−1 are
siblings exists. Let p′i be the new PMF we get by merging pm−1 and pm.

The previous lemma shows that there is a fixed relationship between the
expected lengths of the two codes, and so minimising the length of L is
equivalent to minimising the length of L′. So if one is minimal so too is
the other.

We can then repeat the merging procedure until we reach the root of the
tree, for which the optimal code is obvious.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 23 / 27



Slice coding

Definition (Slice Code)

A slice code or an alphabetic code is one where the lexicographic
(alphabetic) ordering of the codes corresponds to the ordering of the
probabilities (in descending order).

Huffman codes may not be slice codes
If we take the lengths of the Huffman codes, we can generate an
equivalent slice code.

For example: the code generate in Example 1 is not a slice code, but the
following table gives one.

X Probability Huffman Slice

a 0.25 01 00
b 0.25 10 01
c 0.2 11 10
d 0.15 000 110
e 0.15 001 111

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 24 / 27



Block encoding

We can see that there is at least a small loss of efficiency for codes,
when we don’t have natural integer length codes.

This can actually be quite a big cost, in terms of optimality
I in binary codes its up to one bit per symbol

We can spread the overhead out by coding blocks of symbols at a
time

I next week we’ll look at this

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 25 / 27



Assignment

Consider JPEG encoding of an image

1 Discrete Cosine Transform (DCT) of blocks (usually 8× 8)

2 Quantise (round off)

3 Huffman coding

Take a particular (black and white) image. Compute the DCT of each
8× 8 block of the image, and then quantise the coefficients to be
16, 12, 8, 4, 2, and 1 bit integers, and calculate the entropy of the resulting
coefficients:

as a function of the quantisation level; and

for 4 bit quantisation, as a function of the position in the block.

Compare these to quantisation of an equivalent set of uniformly chosen
random numbers.
Consider the implications for the way JPEG might perform quantisation
and coding, and write up 1-2 pages on your results.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 26 / 27



Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

Raymond W. Yeung, Information theory and network coding, Springer, 2010.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 27 / 27


	Compression and Coding

