Information Theory and Networks
Lecture 10: Sampling with Fair Coins

Matthew Roughan
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide
September 18, 2013

From [CT91, p.110-116]

	Example 1 $X=\left\{\begin{array}{l} a, \text { with probability } 1 / 2, \\ b, \text { with probabiti } 1 / 4 \\ c, \text { with probability } 1 / 4, \end{array}\right.$

Example 1

```
Information Theory
8I-60-\varepsilonIOZ
LExample 1
2 0 1
```

- We want to generate a random varible $X \in \Omega=\{1,2, \cdots, m\}$
- X has PMF $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$
- We have a series of (independent) fair coin tosses Z_{1}, Z_{2}, \ldots
- let T denote the number of coin tosses (which is potentially a RV)
- we'd like methods that minmise $E[T]$

Example 1

```
Information Theory
```


[^0]```
8I-60-&IOZ
```

Information Theory 81-60-દโ0
$\left\llcorner_{\text {Example }} 2\right.$

Esample 2

```
~
~
```

Obviously, we could do powers of three with ternary codes, and so on, do lets assume that the probabilities don't all fit some simple power-law.

## Problem

What about non-dyadic probabilities?

$\square$


```
Information Theory
8I-60-\varepsilonIO

Patern

\section*{formation Theory}

We could have also looked into Stochastic Computing here - i.e., techniques for doing computation using operations stochastic processes

\section*{Source Coding and 20 Questions}

Yet another way to think about coding
- 20 questions
- Want to guess a 'fact' - say an experiment's outcome
- Only allowed Yes/No questions
- Want to find the most efficient set of questions
- Obviously, Huffman code is optimal way of generating questions if we know the PMF

\section*{Further reading}

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley and Sons, 1991.```

[^0]: Information Theory

