Information Theory and Networks
 Lecture 10: Sampling with Fair Coins

Matthew Roughan
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/
Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide
September 18, 2013

Part I

Sampling with Fair Coins

USA Today has come out with a new survey: Apparently three out of four people make up 75 percent of the population.

David Letterman

Problem

Imagine you have a fair coin, but you want to sample from an arbitrary distribution, how would you do it?

Example 1

Example: use a sequence of fair coin tosses to generate a random variable X with PMF

$$
X=\left\{\begin{array}{l}
a, \text { with probability } 1 / 2 \\
b, \text { with probability } 1 / 4 \\
c, \text { with probability } 1 / 4
\end{array}\right.
$$

Example 1

Obvious solution:
(1) Toss the coin once:
(c) If its a H , then $X=a$
(2) If its a T, toss it again
(1) If its a H , then $X=b$
(2) If its a T , then $X=c$

$$
X=\left\{\begin{array}{l}
a, \text { with probability } 1 / 2 \\
b, \text { with probability } 1 / 4 \\
c, \text { with probability } 1 / 4
\end{array}\right.
$$

General Problem

- We want to generate a random varible $X \in \Omega=\{1,2, \cdots, m\}$
- X has PMF $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$
- We have a series of (independent) fair coin tosses Z_{1}, Z_{2}, \ldots
- let T denote the number of coin tosses (which is potentially a RV)
- we'd like methods that minmise $E[T]$

Example 1

First thing to note is that the coin tosses define a binary tree:
For example, given the solution for

$$
X=\left\{\begin{array}{l}
a, \text { with probability } 1 / 2 \\
b, \text { with probability } 1 / 4 \\
c, \text { with probability } 1 / 4
\end{array}\right.
$$

So consider the tree we want to generate:

- The tree should be complete: every node should be a leaf, or have two descendents.
- i.e., at a node, we stop, or toss another coin
- probability of a leaf at depth k is 2^{-k}
- The leaves correspond to outcomes for X
- more than one leaf could be labelled with the same outcome
- the total probability of all leaves with the same outcome i should be p_{i}
- The tree could be infinite
- There are multiple possible trees for some problems
- lets aim for the most efficient
- minimise the expected depth

Problem

How could we go about designing such a tree for a dyadic distribution (one whose probabilities are powers of two)?

Is it related to entropy?

Solution: use the Huffman tree we get from treating it like a coding problem.
Why?

- Tree generates dyadic probabilities
- Probability of leaf for code k is $2^{-\ell_{k}}$ where ℓ_{k} is the length of the code (depth of the tree)
- Earlier we showed that for dyadic probabilities the optimal code lengths were

$$
\ell_{k}=\left\lceil\log _{D}\left(\frac{1}{p_{k}}\right)\right\rceil
$$

For dyadic probabilities, this gives integer lengths.

- Huffman code tree generates optimal codes
- So the probabilities the Huffman code generates are the same as the ones we need
- and the expected number of coin tosses will be minimised
- the expected number will be the entropy

Example 2

$$
X=\left\{\begin{array}{lll}
a, & \text { with probability } 1 / 2, & \text { has code } 0 \\
b, & \text { with probability } 1 / 4, & \text { has code } 10 \\
c, & \text { with probability } 1 / 8, & \text { has code } 110 \\
d, & \text { with probability } 1 / 8, & \text { has code } 111
\end{array}\right.
$$

Code tree as a set of trials: $0=H, 1=T$

Problem

What about non-dyadic probabilities?

Solution:

- Break probabilities into dyadic atoms
- Write out the probability in binary (decimal) notation
- You may need to approximate at some point
- Combine back to the original probabilities by applying the same label to the appropriate leaves.
- sum leafs with same labels

Example 3

$$
x= \begin{cases}a, & \text { with probability } 1 / 3 \\ b, & \text { with probability } 2 / 3\end{cases}
$$

Binary expansions:

$$
\begin{aligned}
& \frac{2}{3}=0.101010101 \ldots=2^{-1}+2^{-3}+\cdots \\
& \frac{1}{3}=0.010101010 \ldots=2^{-2}+2^{-4}+\cdots
\end{aligned}
$$

So the atoms we need are

$$
\left(p_{1}, p_{2}, \ldots\right)=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right)
$$

and colour indicates the label.

Example 3

We need a Huffman code tree for the PMF

$$
\left(p_{1}, p_{2}, \ldots\right)=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right)
$$

Problem

What if you don't even know if your coin is fair?

Solution: You can always get a fair $p=1 / 2$ Bernoulli trial with a biased coin by
(1) Toss the coin twice
(2) If you get two heads or two tails, repeat until you get HT or TH
(3) If you get

- HT call that a head
- TH call that a tail

The two events HT and TH have equal probability, by construction.

Source Coding and 20 Questions

Yet another way to think about coding

- 20 questions:
- Want to guess a 'fact' - say an experiment's outcome
- Only allowed Yes/No questions
- Want to find the most efficient set of questions
- Obviously, Huffman code is optimal way of generating questions if we know the PMF

Further reading I

易
Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley and Sons, 1991.

