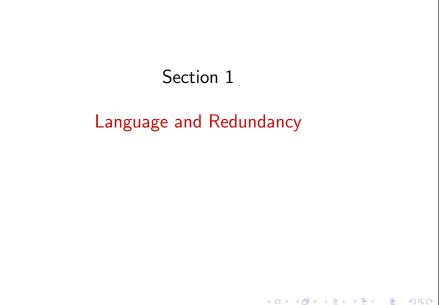

Information Theory and Networks Lecture 11: Coding Language

Matthew Roughan <matthew.roughan@adelaide.edu.au> http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > September 18, 2013

Thanks to the redundancy of language, yxx cxn xndxrstxnd whxt x xm wrxtxng xvxn xf x rxplxcx xll thx vxwxls wxth xn "x".

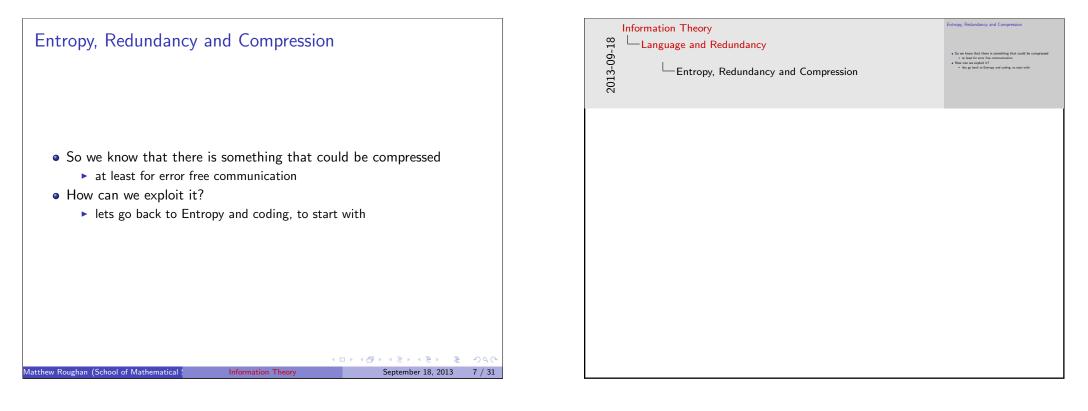

t gts lttl hrdr f y dn't vn kn whr th vwls r.

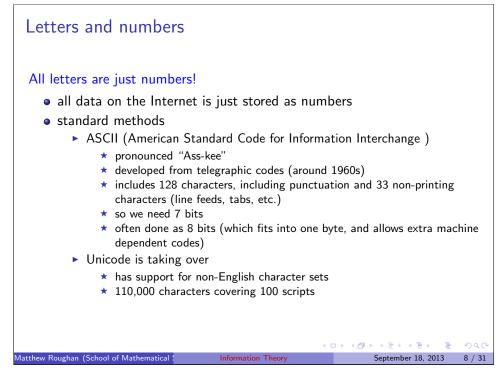
Steven Pinker

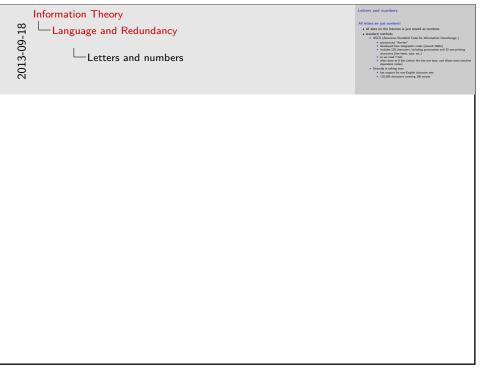
Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosnt mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer is at the rghit pclae. http://knowyourmeme.com/memes/ aoccdrnig-to-rscheearch

Information Theory

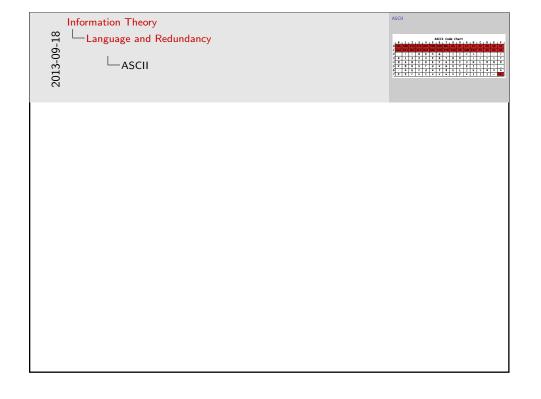
TOBEORNOTTOBEORTOBEORNOT



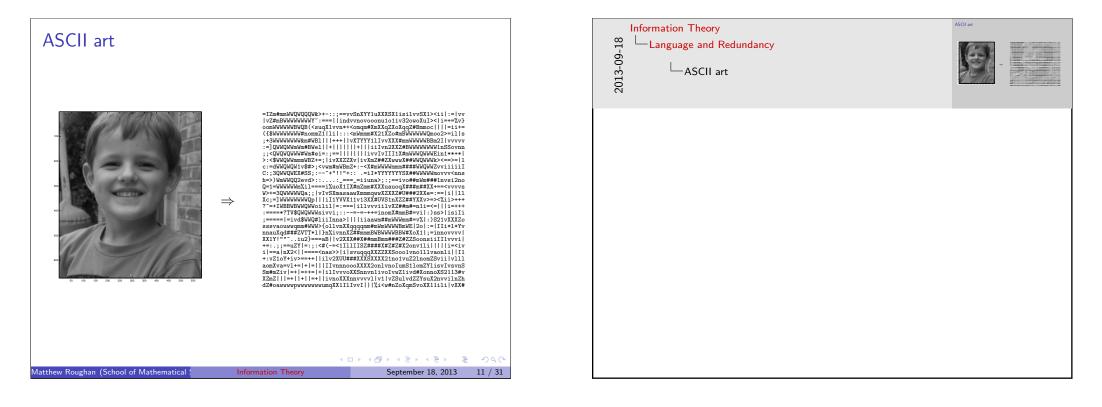

3/31

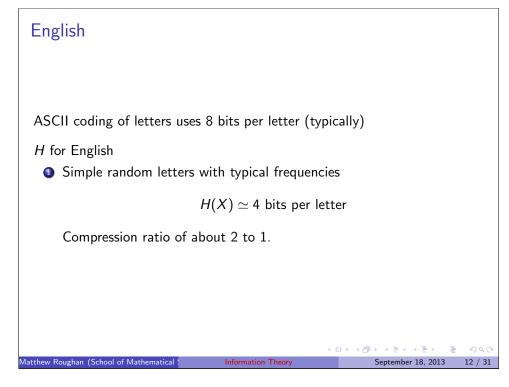

Redundancy	Information Theory Language and Redundancy Redundancy	Redundancy Definition (redundant) Algenim In low redund or worklow topenflows. In contrast of the second or worklow topenflows. In contrast, and the second or worklow topenflows. Exploit (and for the second) how a for a deuderacy. In the definition is minimized In the definition is minimized.
Definition (redundant)	50	- English has validity layered on complexity + we are ignoring postic and authoric considerations $_{\rm V}$ but no doubt there is a lot that can be dropped in some cases
Adjective:		
No longer needed or useful; superfluous.		
 (of words or data) Able to be omitted without loss of meaning or function. 		
English (and other languages) have a lot of redundancy.		
 but the definition is misleading 		
 it is needed, to ensure that communication is accurate even when there is noise 		
 English has subtlety layered on complexity we are ignoring poetic and aesthetic considerations 		
• but no doubt there is a lot that can be dropped in some cases		
< ロ > < 合 > < き > < き > 、 き 、 り < の <		
Matthew Roughan (School of Mathematical Information Theory September 18, 2013 5 / 31		

Redundancy in English		
 We use extra words "He was ready and able 	11	
 We use more letters that 	n we need: see earl	ier quotes
 We use indicators of all it would be obvious (e.g 		ar meanings, when mostly
 Letters and words don't 	have equal frequen	cies
		うしゃ 山田 そんがく かんしゃ
Matthew Roughan (School of Mathematical !	Information Theory	September 18, 2013 6 / 31



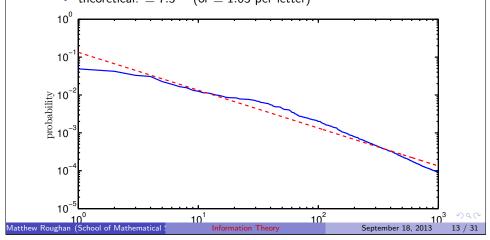
ASCII


ASCII Code Chart																
4	0	1	2	3	4	5	6		8	9	A	В	С	D	E	<u> </u>
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
ı	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2]		!	н	#	\$	°/0	ŵ	-	()	*	+	,	-	•	/
3	0	1	2	з	4	5	6	7	8	9	:	;	۷	=	٨	?
4	0	Α	В	С	D	Е	F	G	H	I	J	K	L	Μ	N	0
5	Ρ	Q	R	S	Т	U	V	¥	X	Y	Ζ	[Ň]	^	_
6]	,	a	b	C	d	е	f	g	h	i	j	k	ι	m	n	0
7	đ	þ	r	S	t	u	v	¥	х	У	z	{		}	ł	DEL
イロトイクトイミト イモト モーション (の) Matthew Roughan (School of Mathematical September 18, 2013 9 / 31																


ASCII in detail

Γ	etter	Number	Binary		
	÷	:	:		
	0	64	100 0000		
	А	65	100 0001		
	В	66	100 0010		
	С	67	100 0011		
	D	68	100 0100		
	Е	69	100 0101		
	F	70	100 0110		
	÷	÷	:		
			↓ □ ▶ ↓	Ø→ < ≥→ < ≥→ < ≥	୬୯୯
Matthew Roughan (School of Mathematical	1	Information The	eory	September 18, 2013	10 / 31

Information Theory Language and Redundancy	ASCII in detail



Information Theory Language and Redundancy Language and Redundancy English	English ASCII coding of letters uses 8 bits per letter (typically) H for English \bullet 2 Single sender letters with typical frequencies H(X) = 4 bits per letter Compression ratio of about 2 to 1.

English

Word frequencies:

- English word frequencies follow Zipf's law
- ► power-law or Pareto distribution
- Entropy of most popular 1000 words
 ▶ empirical: ≈ 8 (or ≈ 1.75 per letter)
 - theoretical: $\simeq 7.5$ (or $\simeq 1.63$ per letter)

Zipf's law = the frequency of any word is inversely proportional to its rank in the frequency table.

Data from TV scripts via http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists

English ASCII coding of letters uses 8 bits per letter (typically) *H* for English In reality, both of these are a bit simplistic 0.6 < H_{English} < 1.3 So maybe 1 bit per letter, or compression of at least 8/1.3 or about 6 to 1. But how might you realise this in practice?

Information Theory

September 18, 2013

14 / 31

Information Theory
Language and Redundancy
Eghth
Lenglish

Upper Bound on Optimal Codes

Remember:

Theorem

latthew Roughan (School of Mathematical

The expected length L of the optimal code for a random variable X is bounded below by the entropy of X, i.e.,

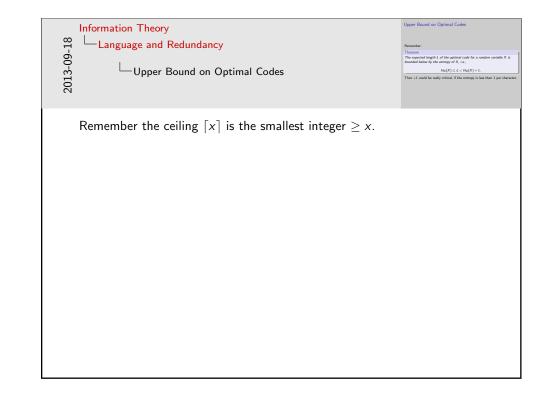
 $H_D(X) \leq L < H_D(X) + 1.$

That +1 could be really critical, if the entropy is less than 1 per character.

Information Theory

<ロ> <団> <団> <目> <目> <日> <日> <日</p>

September 18, 2013


16 / 31

September 18, 2013

15 / 31

Block encoding We can see that there is at least a small loss of efficiency for codes, when we don't have natural integer length codes. This can actually be quite a big cost, in terms of optimality in binary codes its up to one bit per symbol We can spread the overhead out by coding blocks of symbols at a time to understand how to do this properly, we need a better model for language, and the entropy thereof

Information Theory

Information Theory Language and Redundancy	Electic encoding 4. We can see they there as at least a small heat of reflection y for calma, where we first have some at lenge steeping clocks. 4. The steeping s

Block encoding

Encode blocks X_1, X_2, \ldots, X_n , then the expected code length for the entire block will be

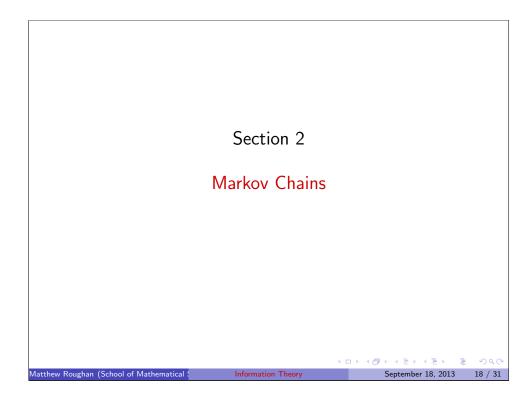
$$H(X_1, X_2, \ldots, X_n) \leq E[\ell(X_1, X_2, \ldots, X_n)] < H(X_1, X_2, \ldots, X_n) + 1$$

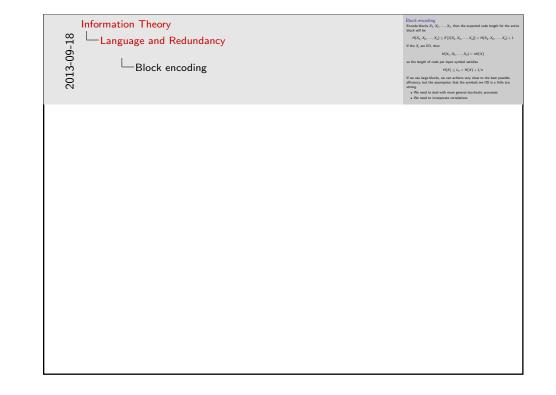
If the X_i are IID, then

$$H(X_1, X_2, \ldots, X_n) = nH(X)$$

so the length of code per input symbol satisfies

$$H(X) \leq L_n < H(X) + 1/n$$


Information Theory


・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへで

September 18, 2013 17 / 31

If we use large blocks, we can achieve very close to the best possible efficiency, but the assumption that the symbols are IID is a little too strong.

- We need to deal with more general stochastic processes
- We need to incorporate correlations
- Matthew Roughan (School of Mathematical

Information Theory Markov Chains	Section 2 Markov Chains

Stochastic Process Definition (Stochastic Process) A stochastic process is an indexed series of random variables $(X_1, X_2, ...)$ characterised by the joint PMFs $P((X_1, X_2, ..., X_n) = (x_1, x_2, ..., x_n)) = p(x_1, x_2, ..., x_n)$ for all *n*. In general: • the X_i don't have to come from the same sample set Ω • the X_i can have any dependency structure you like this is a little hard to handle, so we will restrict our attention.

Stationarity

Definition (Stationary)

atthew Roughan (School of Mat<u>hematical</u>

A stochastic process is said to be stationary if the joint distribution of any subset of the sequence of RVs is invariant with respect to shifts in the time index, i.e.,

Information Theory

$$P((X_1, X_2, \dots, X_n) = (x_1, x_2, \dots, x_n))$$

= $P((X_{1+t}, X_{2+t}, \dots, X_{n+t}) = (x_1, x_2, \dots, x_n)$

for any shift *t*, and for all $x_i \in \Omega$.

Stationarity significantly restricts the processes we consider, but not always enough, so we shall do one further restriction.

Information Theory

2013-09-18	Information Theory Markov Chains Stochastic Process	$\label{eq:stability} \begin{aligned} & \text{Stochastic Process} \\ & \text{Definition} (Stochastic Proces) \\ & \text{at schastic process in interest arise of an advance variables } \\ & (k_1,k_2,\ldots) \\ & \text{characterised by the pice PFF,} \\ & P((K_1,K_2,\ldots,K_k) = (k_1,k_2,\ldots,k_k)) = d(k_1,k_2,\ldots,k_k) \\ & \text{for an } \\ & \text{for general} \\ & \text{the spectral} \\ & \text{the spectral} \\ & \text{the stability} $

Implicitly, for a stationary sequence, all the RVs X_i are in the same sample set Ω .

In practice, we often use a weaker form of stationarity (called weak stationarity, or second order stationarity) that requires that the mean and variance are invariant to time shifts.

latthew Roughan (School of Mathematical

< □ → < □ → < ⊇ → < ⊇ → < ⊇ → ⊇
 September 18, 2013

20 / 31

September 18, 2013 19 / 31

Markov Chains

Definition (Markov Chain)

We call a discrete stochastic process a Markov Chain if the next state change depends only on the current state, not the entire history of the process, i.e., for n = 1, 2, ...

$$P(X_{n+1} = x_{n+1} | X_1, X_2, \dots, X_n) = P(X_{n+1} = x_{n+1} | X_n)$$

for all $x_i \in \Omega$.

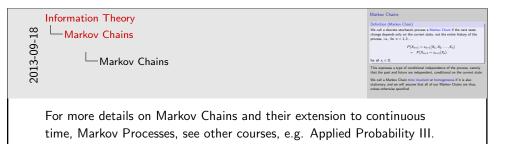
atthew Roughan (School of Mathematical

This expresses a type of conditional independence of the process, namely that the past and future are independent, conditional on the current state.

Information Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへの

September 18, 2013


22 / 31

September 18, 2013 21 / 31

We call a Markov Chain time invariant or homogeneous if it is also stationary, and we will assume that all of our Markov Chains are thus, unless otherwise specified.

Transition Matrix Definition (Probability Transition Matrix) For a time-invariant Markov Chain, we define the probability transition matrix $P = [p_{ij}]$ by $p_{ij} = P(X_{n+1} = j | X_n = i)$ for i, j = 1, 2, ..., m where $\Omega = \{1, 2, ..., m\}$. The probability transition matrix is a stochastic matrix, i.e., its elements are non-negative, and its rows sum to one.

Information Theory

Information Theory Image: Markov Chains Markov Chains Chains Image: Markov Chains Image: Markov Chains I	$\label{eq:resultion} Transition Matrix \\ Definition (Probability Transition Matrix) \\ Tra a time-invariant Matter Calu, we define the pendadity transition \\ matrix P = [n] by \\ m_{p} = P(k_{p} - p(k_{p} -$

Some more definitions

Definition (Irreducible)

We say a time-invariant Markov Chain is irreducible if it is possible to go from any state to any other state with positive probability.

Definition (Periodic)

A state *i* has period *k* if any return to the state must occur in multiples of k time steps. If the only valid k = 1, then we say the state is aperiodic. A Markov Chain is aperiodic if all states are aperiodic.

Information Theory

Some more definitions

atthew Roughan (School of Mathematical

Definition (Recurrence)

A state is transient if, given we start in state *i*, there is a non-zero probability that we will never return to *i*. If the state is not transient, it is recurrent, and it is positive recurrent if the expected time to the next recurrence is finite.

Definition (Ergodic)

A state *i* is called ergodic if it is aperiodic and positive recurrent, and if all states in an irreducible Markov Chain are ergodic, we say the Markov Chain is ergodic.

Typically, we will assume our Markov Chains are homogeneous and ergodic.

Information Theory

Information Theory		Some more definitions
© Markov Chains 60- ∞ Some more o	definitions	Definitions ((reductivity) for any a time smoothed of the parallels to get from any static samp after data with parallels problem probability. Definitions (Provide) A state is the parallel of a samp state state the state must cause in multiples of the states. If the same state is a special state is a special state backetor. Chains is special of a distance are special state is a special state.

An irreducible Markov Chain needs only one aperiodic state to imply the Markov chain is aperiodic.

There are many other properties and theorems we could present, but this set should suffice for our work.

latthew Roughan (School of Mathematical

< □ → < □ → < ⊇ → < ⊇ → < ⊇ → ⊇
 September 18, 2013

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─注 ─のへの

September 18, 2013

23 / 31

24 / 31

Markov Chain Results

Given a current state probabilities at time *n*, $\mu^{(n)}$, i.e.,

$$\mu_i^{(n)} = P(X_n = i)$$

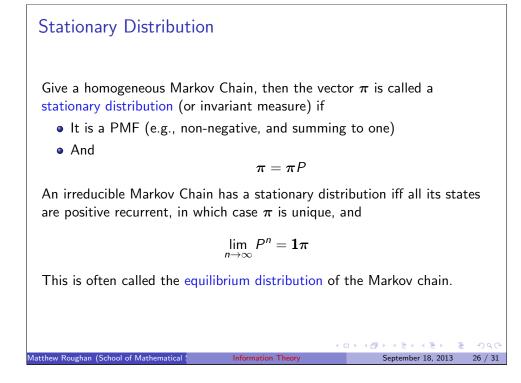
We can calculate the state probabilities after a transition by

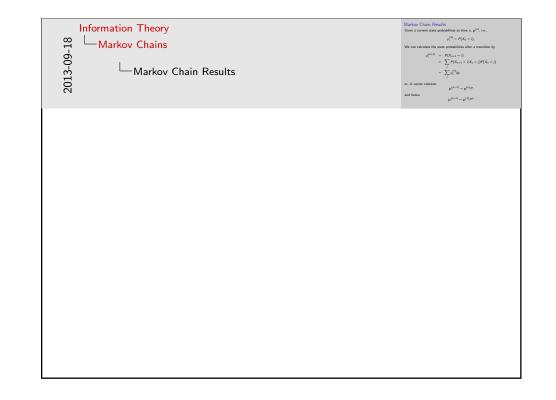
$$\mu_{i}^{(n+1)} = P(X_{n+1} = i)$$

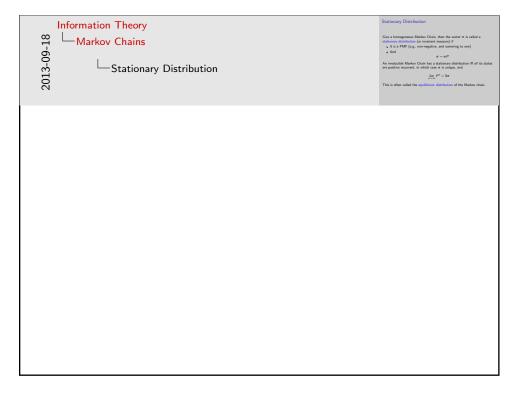
= $\sum_{j} P(X_{n+1} = i | X_{n} = j) P(X_{n} = j)$
= $\sum_{j} \mu_{j}^{(n)} p_{ji}$

or, in vector notation

$$\mu^{(n+1)}=\mu^{(n)}P$$


and hence


$$\mu^{(n+1)}=\mu^{(1)}P^n$$


Information Theory

September 18, 2013 25 / 31

Aatthew Roughan (School of Mathematical

Higher Order Markov Chains

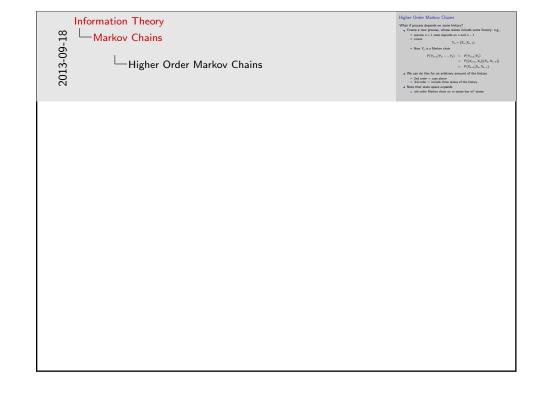
What if process depends on some history?

- Create a new process, whose states include some history: e.g.,
 - ▶ assume n + 1 state depends on n and n 1
 - create

atthew Roughan (School of Mathematical 3

$$Y_n = (X_n, X_{n-1})$$

• Now Y_n is a Markov chain

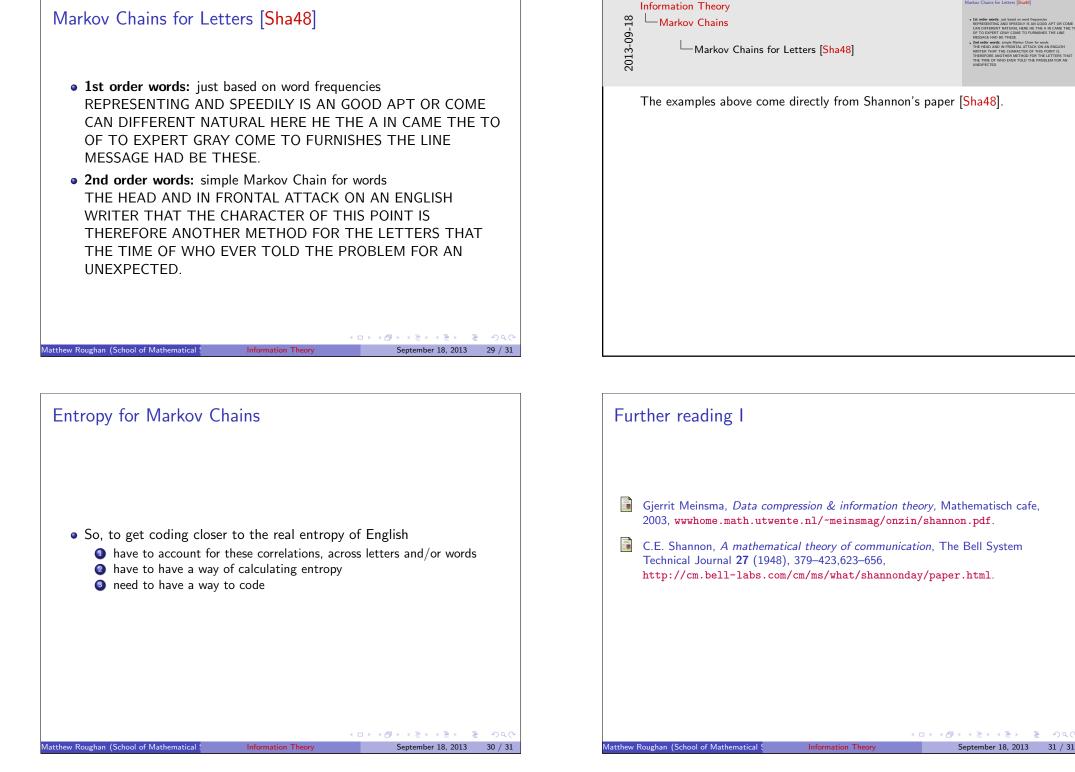

$$P(Y_{n+1}|Y_1,...,Y_n) = P(Y_{n+1}|Y_n) = P((X_{n+1},X_n)|(X_n,X_{n-1})) = P(X_{n+1}|X_n,X_{n-1})$$

- We can do this for an arbitrary amount of the history
 - ► 2nd order = case above
 - ▶ 3rd order = include three states of the history
- Note that state space expands
 - *n*th order Markov chain on *m* states has m^d states

Markov Chains for Letters [Sha48]

- Oth order: equiprobable letters XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL HJQD
- 1st order: IID letter frequencies OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL
- 2nd order: simple Markov Chain, i.e., diagrams
 ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN
 D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY
 TOBE SEACE CTISBE
- **3rd order:** 2nd order Markov chain, i.e., trigrams N NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

Information Theory


Sorry that the "order" used above (the order of the approximation) doesn't match the "order" of the Markov Chain, but the examples above come directly from Shannon's paper [Sha48], so I am trying to be consistent with his notation, as well as common Markov chain notation.

There are 27 symbols modelled, the 26 letters, and the space (so 27 states in the 1st order Markov Chain).

28 / 31

◆□> ◆□> ◆三> ◆三> ● 三 のへの

September 18, 2013 27 / 31

rkov Chains for Letters ISh