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Redundancy

This parrot is no more. It has ceased to be. It’s expired and
gone to meet its maker. This is a late parrot. It’s a stiff.
Bereft of life, it rests in peace. If you hadn’t nailed it to the
perch, it would be pushing up the daisies. It’s rung down the
curtain and joined the choir invisible. This is an ex-parrot.

Monty Python, The Dead Parrot Sketch
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Entropy Rate [CT91, p.63]

Definition (Entropy Rate)

The entropy rate of a stochastic process {Xi} is defined by

H(X ) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

when the limit exists.
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Entropy Rate [CT91, p.63]

Entropy Rate: Example 1
IID symbols

Remember that entropy is additive for independent RVs, so

H(X ) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

= lim
n→∞

1

n

n∑
i=1

H(Xi )

= lim
n→∞

nH(X1)

n
= H(X1)

as you would hope!
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Entropy Rate: Example 2
independent, but not identical

As before

H(X ) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn)

= lim
n→∞

1

n

n∑
i=1

H(Xi )

but this time, the H(Xi ) are not all equal. When the limit exists, this just
looks like the expected entropy, but it doesn’t have to exist, e.g.,
X ∈ {0, 1} with pi = P(Xi = 1), where

pi =

{
0.5, if 2k < log log i ≤ 2k + 1
0, if 2k + 1 < log log i ≤ 2k + 2

for integer k. The process has arbitrarily long streches where H(Xi ) = 1,
followed by exponentially longer stretches where H(Xi ) = 0, so the running
average oscillates (and hence has no limit).
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Entropy Rate: Alt Def

There is an alternative definition for entropy rate:

H ′(X ) = lim
n→∞

H(Xn|Xn−1, . . . ,X1)

H(X ) is the long term rate at which entropy grows per symbol

H ′(X ) is the conditional entropy of the last symbol given the
long-term history of a process.

It turns out they are the same thing (for cases we care about).

Theorem

For a stationary stochastic process, the two entropy rates exist (the limits
are defined), and they are equal

H ′(X ) = H(X )
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For proof see [CT91, pp.64-65] (it uses a theorem, the AEP, that we have

yet to prove).



Entropy Rate: Example 3
Markov Chain

The nice thing about the second definition is it gives us an approach for
calculating the entropy rate for a Markov Chain. The Markov property
immediately tells us that

H(Xn|Xn−1, . . . ,X1) = H(Xn|Xn−1)

So the entropy rate for a Markov Chain is just

H ′(X ) = lim
n→∞

H(Xn|Xn−1, . . . ,X1) = lim
n→∞

H(Xn|Xn−1)

And we can calculate that directly in terms of the transition matrix giving
the following result.
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Entropy Rate: Example 3
Markov Chain

Theorem

The entropy rate of a stationary Markov Chain with transition matrix P
and stationary distribution π is just

H(X ) = lim
n→∞

H(Xn|Xn−1) = −
∑
i ,j

πipij log pij
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Entropy Rate: Example 3

Proof.

From the definition of conditional entropy

lim
n→∞

H(Xn|Xn−1)

= − lim
n→∞

∑
i ,j

p(Xn−1 = i)p(Xn = j |Xn−1 = i) log p(Xn = j |Xn−1 = i)

For a stationary (homogeneous) Markov Chain p(Xn = j |Xn−1 = i) = pij

independent of n, and we consider (here) only finite state cases, so the
limit can be taken inside the summation to give:

H(X ) = −
∑
i

lim
n→∞

p(Xn−1 = i)
∑
j

pij log pij

= −
∑
i

πi
∑
j

pij log pij
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Entropy Rate: Example 3
Markov Chain

Example: Two state process, with probability transition matrix

P =

[
1− α α
β 1− β

]

α

β

1-β1-α

1 2
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Entropy Rate: Example 3
Markov Chain

Stationary distribution:

π =

(
β

α + β
,

α

α + β

)
Entropy:

H(X ) = −
∑
i ,j

πipij log pij

=
β

α + β
(α logα + (1− α) log(1− α))

+
α

α + β
(β log β + (1− β) log(1− β))

=
βH(α)

α + β
+
αH(β)

α + β
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Entropy Rate: Example 3
Markov Chain

Entropy:

H(X ) =
βH(α)

α + β
+
αH(β)

α + β

0

0.5

1

0

0.5

1
0

0.5

1

αβ
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Section 2

Block-Based Compression
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Block encoding
Encode blocks of n symbols, e.g., (X1,X2, . . . ,Xn), then the expected
code length for the entire block will be

H(X1,X2, . . . ,Xn) ≤ E [`(X1,X2, . . . ,Xn)] < H(X1,X2, . . . ,Xn) + 1

If the Xi are IID, then

H(X1,X2, . . . ,Xn) = nH(X )

so the length of code per input symbol satisfies

H(X ) ≤ Ln < H(X ) + 1/n

If we use large blocks, we can achieve very close to the best possible
efficiency, but the assumption that the symbols are IID is a little too
strong.

We need to deal with more general stochastic processes

We need to incorporate correlations
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Block encoding of correlated data

Theorem

The minimum expected codeword length per symbol for coding n symbol
blocks, L∗n = E [`(X1,X2, . . . ,Xn)] /n, satisfies

H(X1,X2, . . . ,Xn) ≤ L∗n < H(X1,X2, . . . ,Xn) + 1,

and for a stationary stochastic process

L∗n → H(X )

where H(X ) is the entropy rate of the process.

In essence this says we can make the code as close to optimum as we like
by increasing the block size.
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Block encoding of correlated data

The proof just follows from the definition of entropy rate (see [CT91,

p.89]) for more detail.

Obvious Solution

Code blocks:

Take equal length blocks and code them

Problems:
I Huffman coding needs probabilities

F do you estimate them from the file – two passes?
F or use generic probabilities – not quite accurate for a particular file?

I blocks of length n have dn possible “symbols”
F estimating small probabilities is hard
F do you include the (large) dictionary in the compressed file?
F Huffman needs complete recalculation to change the block size

I block coding introduces delay
F more on that later
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Problem 1

We saw Huffman coding was good but there are some problems

How do you know the probabilities?
I if we want to do this for a particular file it takes two passes, and then

we need to copy the dictionary
I easy enough to measure letter frequencies in English, in general
I how useful is the general case for a specific document?
I how do errors in probability estimates (for small probabilities these

could be large) affect efficiency
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Problem 1

What is the cost incurred if we have an incorrect estimate of the
probabilities pi [CT91, pp.89-90].

Theorem

The expected length of codewords under p(x) of the code assignment

`(x) = dlog(1/q(x))e

satisfies

H(p) + D(p‖q) ≤ Ep [`(X )] < H(p) + D(p‖q) + 1.

Effectively, the cost of using the wrong distribution q is the relative
entropy between q and p, i.e., D(p‖q).
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Problem 1

Proof.

`(x) = dlog(1/q(x))e

so

E [`(X )] =
∑
x

p(x)dlog(1/q(x))e

<
∑
x

p(x)
(

log(1/q(x)) + 1
)

=
∑
x

p(x)
(

log(p(x)/[q(x)p(x)])
)

+ 1

=
∑
x

p(x) log(p(x)/q(x)) +
∑
x

p(x) log(1/p(x)) + 1

= D(p‖q) + H(p) + 1

And similarly for the lower bound.
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Huffman coding with estimates: Example 1

X probability
p

optimal
codewords

probability
estimate q

actual
codewords

a 0.25 01 0.28 01

b 0.25 10 0.22 10

c 0.2 11 0.16 000

d 0.15 000 0.16 001

e 0.15 001 0.18 11

H(X ) 2.286 2.286

Ep` 2.3 2.35

D(p‖q) = 0.016
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Huffman coding with estimates: Example 1

Example 1 from Lecture 09. Note the difference in the average codeword
lengths, despite roughly the same entropy for both distributions.
However, the relative entropy is small, and the integer lengths of the
codes mean that there is a fair bit of slip here, so some errors might not
change the code lengths at all. The problem becomes more serious for
block codes where

1. the probabilities are small, and hence harder to estimate or predict
accurately, and

2. the bounds are tighter (that’s the point of block encoding after all).



Assignment

Create block Huffman codes for English:

Analyse text again, this time looking not just at frequencies, but also
at the Markov modes or order 1-5.

I you may simplify by only using lower case, and ignoring punctuation
I so you should have 27n symbols to code, for block size n

Compare the efficiency of each code, both theoretically by calculating
appropriate entropies, and in practice, by coding your text.

Again, generate a short report on the results (include your tree for the
block length 1 model).
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Assignment

Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

Gjerrit Meinsma, Data compression & information theory, Mathematisch cafe,
2003, wwwhome.math.utwente.nl/~meinsmag/onzin/shannon.pdf.
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