Information Theory and Networks Lecture 14: Practical Compression

Matthew Roughan <matthew.roughan@adelaide.edu.au> http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > September 18, 2013

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Part I

Practical Compression

(日) (同) (三) (三)

э

Baseball is 90 percent mental and the other half is physical. Yogi Berra

(日) (同) (三) (三)

э

Section 1

Asymptotic Equipartition Property (AEP)

イロト イヨト イヨト

3

Weak Law of Large Numbers

For independent, identically distributed (IID) RVs X_i , then as $n \to \infty$

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{p}{\rightarrow}E\left[X_{i}\right]$$

where convergence is in probability.

- Uses the Law of Large Numbers to find an approximation for entropy in terms we can realize from observed sequences
- Flipping it around, probabilities of observed sequences of *n* symbols will be close to 2^{-nH}
 - almost all events are equally surprising
- Allows division of possible sequences into
 - typical
 - non-typical

Properties proved for typical set will be true with high probability.

AEP formalized

Theorem (AEP)

If X_1, X_2, \ldots are IID with PMF p(x), then

$$-\frac{1}{n}\log P(x_1, x_2, \ldots, x_n) \stackrel{p}{\to} H(X)$$

Proof.

Functions of independent RVs are also independent RVs, so the $P(X_i)$ and log $P(X_i)$ are IID RVs, so

$$\frac{1}{n}\log P(x_1, x_2, \dots, x_n) = \frac{1}{n}\log \prod_{i=1}^n p(x_i) = \frac{1}{n}\sum_{i=1}^n \log p(x_i).$$

Hence, by the Weak Law of Large Numbers:

$$-\frac{1}{n}\log P(x_1, x_2, \ldots, x_n) \xrightarrow{p} -E\left[\log p(X)\right] = H(X).$$

AEP intepretation

 $2^{-nH(X)}$

(remembering we take logs to base 2 in the default definition of entropy)

3

(日) (周) (三) (三)

Typical Sequences

Definition (typical)

The typical set $A_{\epsilon}^{(n)}$ with respect to the PMF p(x) is the set of sequences $(x_1, x_2, \ldots, x_n) \in \Omega^n$ with the property

$$2^{-n(H(X)+\epsilon)} \le P(x_1, x_2, \ldots, x_n) \le 2^{-n(H(X)-\epsilon)}$$

Properties:

- P (A_ϵ⁽ⁿ⁾) > 1 − ϵ for sufficiently large n. (follows directly from the AEP theorem)
 |A_ϵ⁽ⁿ⁾| ≤ 2^{n(H(X)+ϵ)} Proof [CT91, Chapter 3, p.52]
- of for other properties see [CT91, Chapter 3, p.52]

|▲欄▶||▲園▶||▲園▶|||三園

- We can divide the set of possible sequences into
 - typical $A_{\epsilon}^{(n)}$
 - 2 atypical $\Omega^n \setminus A_{\epsilon}^{(n)}$
- Is For sufficiently long sequences, the typical set is both
 - very likely
 - relatively small, compared to all possible sequences, if the entropy is small
- It suggests a compression method
 - For typical sequences
 - Assign, in any order you like, a number to each sequence
 - 2 The code is just this number, in binary, prefixed by zero
 - Ø For atypical sequences, assign them a number too
 - 1 Assign, in any order you like, a number to each sequence
 - 2 The code is just this number, in binary, prefixed by one

It suggests a compression method

• For typical sequences the code is has binary length, at most

$$\ell = n(H + \epsilon) + 1 + 1$$

- **1** There are less than $2^{n(H+\epsilon)}$ sequences, so we need numbers with $n(H+\epsilon)$ bits.
- **2** The first +1 arise from prefixing with a zero
- **③** The second +1 arise because $n(H + \epsilon)$ might not be an integer

Por atypical sequences the code is has binary length, at most

$$\ell = n \log_2 |\Omega| + 1 + 1$$

① The first +1 arise from prefixing with a one

2 The second +1 arise because $n \log_2 |\Omega|$ might not be an integer

Theorem (Expected Message Length)

If $X_1, X_2, ...$ are IID with PMF p(x), then for any $\epsilon' > 0$, there exists a code which maps sequences of length n into binary strings such that the mapping is one-to-one) and therefore invertible and

$$E\left[\frac{1}{n}\ell(X_1,X_2,\ldots,X_n)\right] \leq H(X) + \epsilon',$$

for n sufficiently large.

Proof.

Use the coding method described above, then

$$E[\ell(\mathbf{x})] \leq \sum_{\mathbf{x}} p(\mathbf{x})\ell(\mathbf{x})$$

= $\sum_{\mathbf{x}\in A_{\epsilon}^{(n)}} p(\mathbf{x})\ell(\mathbf{x}) + \sum_{\mathbf{x}\notin A_{\epsilon}^{(n)}} p(\mathbf{x})\ell(\mathbf{x})$
 $\leq \sum_{\mathbf{x}\in A_{\epsilon}^{(n)}} p(\mathbf{x}) [n(H+\epsilon)+2] + \sum_{\mathbf{x}\notin A_{\epsilon}^{(n)}} p(\mathbf{x}) [n\log |\Omega|+2]$
= $P\left(A_{\epsilon}^{(n)}\right) [n(H+\epsilon)+2] + \left(1 - P\left(A_{\epsilon}^{(n)}\right)\right) [n\log |\Omega|+2]$
 $\leq n(H+\epsilon) + \epsilon n\log |\Omega|+2$

Which satisfies the theorem if we take $\epsilon' = \epsilon + \epsilon \log |\Omega| + 2/n$, because that can be made arbitrarily small for suitable choice of ϵ and n.

< A

Corollary

Don't code per symbol!

- The above gives us a bound on coding of H(X) bits per symbol in the original sequence.
- Simple counter example:
 - Sequence

- Has P(a) = 1, and H(X) = 0.
- Best coding per symbol still needs one bit per symbol, e.g., it isn't close to the best coding
- Better: run-length coding

• So now we are considering new *n*-length symbols

Section 2

Some Compression algorithms

- ∢ ≣ →

Image: A match a ma

3

Run length encoding (RLE)

If our data has many sequences of the same symbol

• record the symbols, and how long each run is, so

aaaaabbbbbaaaaaabbbbbbaaaaaaabbbbb

becomes

5a5b7a5b9a5b

- 36 symbols becomes 12
 - "alphabet" may be bigger though, as now we include numbers
- Compression factor depends on the data, a lot.

Run length encoding (RLE)

Use for instance in bitmapped images, with a limited palette:

- run length encoded: 38 numbers
 15,3,6,2,5,1,1,5,4,2,1,2,1,1,4,4,1,1,4,4,6,4,1,1,3,2,1,2,1,1,2,1,1,5,6
 but if we just record the numbers
 - 8 bits then code = $38 \times 8 = 304$ bits
 - ▶ 4 bits (minimal) = 38 × 4 = 152 bits

Run length encoding (RLE)

- Run length encoded: 38 numbers
 15,3,6,2,5,1,1,5,4,2,1,2,1,1,4,4,1,1,4,4,6,4,1,1,3,2,1,2,1,1,2,1,1,5,6
 but if we just record the numbers
 - 8 bits then code = $38 \times 8 = 304$ bits
 - ▶ 4 bits (minimal) = 38 × 4 = 152 bits
- What if we Huffman encode the numbers?

$$H(X) \simeq 2.54$$

So the total number of bits (assuming efficient encoding) would be

$$38 \times 2.54 \simeq 97$$
 bits

which is slightly better than 130 bits for the raw file.

• Compare Huffman coding of original with blocks of 5 gives about 73 bits, so we may as well just do a raw Huffman code.

- 3

Further reading I

Thomas M. Cover and Joy A. Thomas, *Elements of information theory*, John Wiley and Sons, 1991.

Raymond W. Yeung, Information theory and network coding, Springer, 2010.