# Information Theory and Networks Lecture 15: Stream Coding

Matthew Roughan <matthew.roughan@adelaide.edu.au> http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture\_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > September 18, 2013

<ロ> (四) (四) (三) (三) (三)

September 18, 2013

3/26



 $\ensuremath{\mathsf{Dr}}$  . Egon Spengler: There's something very important I forgot to tell you.

Dr. Peter Venkman: What?

Dr. Egon Spengler: Don't cross the streams.

Dr. Peter Venkman: Why?

Dr. Egon Spengler: It would be bad.

[some time later]

Aatthew Roughan (School of Mathematical

Dr. Egon Spengler: [hesitates] We'll cross the streams. Dr. Peter Venkman: 'Scuse me Egon? You said crossing the streams was bad!

Dr. Egon Spengler: Not necessarily. There's definitely a very slim chance we'll survive.

Information Theory

Ghost Busters



latthew Roughan (School of Mathematical 💲

Information Theory









| <ul> <li>RLE (see last lect</li> <li>Lempel-Ziv(-Welc</li> <li>Arithmetic Coding</li> </ul> | h) |  |  |
|---------------------------------------------------------------------------------------------|----|--|--|
|                                                                                             | ,  |  |  |
|                                                                                             |    |  |  |

| <br>ation Theory<br>eam Compression Examples | Arithmetic Coding<br>• RLE (see test between)<br>• Longe-Zra(Webb)<br>• Arithmetic Coding |
|----------------------------------------------|-------------------------------------------------------------------------------------------|
|                                              |                                                                                           |
|                                              |                                                                                           |
|                                              |                                                                                           |
|                                              |                                                                                           |

# Lempel-Ziv-Welch (LZW) [ZL78, Wel84]

- Simple version encodes series of 8-bit data (e.g., ASCII)
- 12 bit "codewords"
  - codes from 0-255 represents an 8-bit character (directly)
  - codes from 256-4095 refer to a dictionary, based on the data
- goal replace long, repeated strings with a simple code (number)
  - construct the dictionary of strings as you go
  - ▶ as the file is processed, we get better and better compression (we hope)
- encoding
  - dictionary starts with all strings of length 1
  - repeat

latthew Roughan (School of Mathematical

- $\star$  find longest string W in dictionary that matches current input
- ★ put dictionary index for W in output, and remove W from input
- \* add W followed by next symbol in the input to the dictionary

<ロ> <団> <団> <目> <目> <日> <日> <日</p>

September 18, 2013

10 / 26

September 18, 2013 9 / 26

- decoding
  - iteratively translate and build the dictionary
  - don't need to transmit the dictionary

# Arithmetic Coding Use an adaptive Bayesian model for the probabilities estimate it as we go along Encode with a Shannon-Fano-Elias-like code Decoder decodes symbols, and uses the same method to estimate probabilities, and hence derive the codes as you go along.

Information Theory



| Information Theory<br>Stream Compression Examples<br>Arithmetic Coding | Arthemetic Coding  • Use as adaptive Bryonia model for the probabilities  • suinote it as way adapt  • Excede with a Sharano-Fano-Elias fue code  • Code decode scales where the codes as your go along  building, and hence further the codes as your go along |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |                                                                                                                                                                                                                                                                 |
|                                                                        |                                                                                                                                                                                                                                                                 |
|                                                                        |                                                                                                                                                                                                                                                                 |
|                                                                        |                                                                                                                                                                                                                                                                 |

# Bayesian Model

- Take source alphabet  $\Omega = \{a_1, a_2, \dots, a_I\}$  where  $a_I$  indicates "end of transmission"
- Source produces  $X_1, X_2, \ldots \in \Omega$
- Both source coder, and receiver build a predictive probability distribution

$$p(X_n = a_i | X_{n-1}, X_{n-2}, \dots, X_1)$$

Information Theory

Information Theory

- For example, use Bayesian estimates
  - fix probability of  $a_I = 0.15$

atthew Roughan (School of Mathematical 3

iterate Bayes law to get estimates



| Information Theory<br>Stream Compression Examples<br>Bayesian Model | Expression Model<br>• This source alphabet $\Omega = \{x_1, x_2, \dots, k\}$ where $x_i$ indicates and of<br>intermediation $(x_1, X_1, \dots, \xi)$ .<br>• Brain source output or service hold is a structure and which is<br><b>definition</b> $R(X_i = A_i   X_{i-1}, X_{i-1}, \dots, X_i)$<br>• For example, see Bayesian extenses to be a structure of the structure of the second structure of the st |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We don't, in general, assume that the $X_i$ are IID.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| We must fix $a_l=0.15$ because you won't see that symbol            | until the end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



< □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≥
 September 18, 2013

12 / 26

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

September 18, 2013 11 / 26

# SFE Illustration 1

| X         | p(x)  | F(x)  | $\bar{F}(x)$ | $ar{F}(x)$ in binary | $\ell(x)$ co | odeword |
|-----------|-------|-------|--------------|----------------------|--------------|---------|
| а         | 0.25  | 0.25  | 0.125        | 0.001 <sub>2</sub>   |              |         |
| b         | 0.5   | 0.75  | 0.5          | 0.12                 |              |         |
| с         | 0.125 | 0.875 | 0.8125       | $0.1101_2$           |              |         |
| d         | 0.125 | 1.0   | 0.9375       | $0.1111_2$           |              |         |
| H(X)      | 1.75  |       |              |                      |              |         |
| $E_p\ell$ |       |       |              |                      |              |         |
|           |       |       |              |                      |              |         |
|           |       |       |              | • • • •              |              | E の へ   |

| ~~~      | Information Theory          | SFE Illus         | tration : | 1    |        |                   |           |       |
|----------|-----------------------------|-------------------|-----------|------|--------|-------------------|-----------|-------|
| 18       | Stream Compression Examples | x                 | p(x)      | F(x) | Ē(x)   | F(x) in<br>binary | $\ell(x)$ | codew |
| 6        |                             | a                 | 0.25      | 0.25 | 0.125  | 0.0012            |           |       |
| 2013-09- |                             | b<br>c            | 0.5       | 0.75 | 0.5    | 0.12<br>0.11012   |           |       |
| Ϋ́       | SFE Illustration 1          | d                 | 0.125     | 1.0  | 0.9375 | $0.1111_2$        |           |       |
| 1        |                             | H(X)<br>$E_p\ell$ | 1./5      |      |        |                   |           |       |
| Я        |                             |                   |           |      |        |                   |           |       |
|          |                             |                   |           |      |        |                   |           |       |
|          |                             |                   |           |      |        |                   |           |       |
|          |                             |                   |           |      |        |                   |           |       |

### [CT91, Example 5.9.1, p.103].

Note that even though the code is finite here, it wouldn't be prefix free if we just used the binary for  $\overline{F}$ .





# SFE Coding

• Lets do it for IID symbols:

atthew Roughan (School of Mathematical

 $p(X_n = a_i | X_{n-1}, X_{n-2}, \dots, X_1) = p(X_n = a_i)$ 

Optimal codeword length approximation

$$\ell(a_i) = \left\lceil \log\left(\frac{1}{p(a_i)}\right) \right\rceil$$

Have one extra bit (see why in a second)

$$\ell(a_i) = \left\lceil \log\left(\frac{1}{p(a_i)}\right) 
ight
ceil + 1$$

Information Theory

September 18, 2013 15 / 26

• Truncate the codes from  $\overline{F}$  to this length

| S     | FE IIIus         | tration               | 1                     |                  |                      |                    |                     |
|-------|------------------|-----------------------|-----------------------|------------------|----------------------|--------------------|---------------------|
|       | X                | <i>p</i> ( <i>x</i> ) | <i>F</i> ( <i>x</i> ) | Ē(x)             | $ar{F}(x)$ in binary | $\ell(x)$          | codeword            |
|       | а                | 0.25                  | 0.25                  | 0.125            | 0.0012               | 3                  | 001                 |
|       | b                | 0.5                   | 0.75                  | 0.5              | 0.12                 | 2                  | 10                  |
|       | с                | 0.125                 | 0.875                 | 0.8125           | $0.1101_{2}$         | 4                  | 1101                |
|       | d                | 0.125                 | 1.0                   | 0.9375           | 0.1111 <sub>2</sub>  | 4                  | 1111                |
|       | H(X)             | 1.75                  |                       |                  |                      |                    |                     |
|       | $E_p\ell$        |                       |                       |                  |                      |                    | 2.75                |
|       |                  |                       |                       |                  |                      |                    | bits per            |
|       |                  |                       |                       |                  |                      |                    | symbol              |
|       |                  |                       |                       |                  |                      |                    |                     |
|       |                  |                       |                       |                  |                      |                    |                     |
|       |                  |                       |                       |                  |                      | < <b>∂</b> > < ≣ > |                     |
| Matth | new Roughan (Scl | hool of Mathema       | itical :              | Information Theo | ory                  | Septemb            | er 18, 2013 16 / 26 |

| Information Theo<br>Information Theo<br>Stream Com | pression Examples | SEE Coding<br>• Last de its full Disputable:<br>$\begin{split} &\mu(X_{0}=a_{1} X_{0}-X_{0}-x_{0},\cdots,X_{n})=\mu(X_{0}=a_{1})\\ &-Optimal conducted length expressionsion: &\left(a_{1}\right)=\left[\log\left(\frac{1}{ A_{0} }\right)\right]\\ &+ Have sense that the (match symbol as means) &\left(a_{1}\right)=\left[\log\left(\frac{1}{ A_{0} }\right)\right]=1\\ &+ Toronate the scalar for some P is the length. \end{split}$ |
|----------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                          |



NB: Huffman code for this case achieves the entropy bound. Last bit of the last two could be omitted, but we can't just drop a bit from all of them or it isn't prefix free.



# SFE Coding Theory

Use the first  $\ell(x)$  bits of  $\overline{F}(x)$ 

• possible error in rounding off

 $ar{F}(x) - \lfloor ar{F}(x) 
floor_{\ell(x)} < rac{1}{2^{\ell(x)}}$ 

• take

$$\ell(x) = \left\lceil \log\left(\frac{1}{\rho(x)}\right) \right\rceil + 1$$

• then

$$\frac{1}{2^{\ell(x)}} < \frac{p(x)}{2} = \bar{F}(x) - F(x-1)$$

• thus

 $\overline{F}(x) - \lfloor \overline{F}(x) \rfloor_{\ell(x)} < \overline{F}(x) - F(x-1)$ 

• thus the  $\ell(x)$  length code is in the interval we want it to be in

Information Theory



Denote a number x rounded down (by say a floor function) to m digits by

$$\lfloor x \rfloor_m$$

Note also that

$$\frac{p(x)}{2} = \bar{F}(x) - F(x-1)$$

by definition of  $\overline{F}$ .

September 18, 2013

<ロ> <団> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

18 / 26

# SFE Coding Theory

atthew Roughan (School of Mathematical

Test prefix free:

• Take a codeword  $z_1 z_2 \dots z_n$  to represent the interval

 $\left[0.z_1z_2\ldots z_n, \ 0.z_1z_2\ldots z_n+\frac{1}{2^n}\right)$ 

- the codes are prefix free iff the intervals are disjoint
- to see that, think of the binary code tree
- From above, the intervals corresponding to the codewords must like entirely inside the interval [F(x-1), F(x)], so they must be disjoint (see below)
  - ▶ given the choice of ℓ(x) above, the codewords will be on average 1 bit longer than similar Huffman code, but
  - if the codewords are 1 symbols less, then there is the potential for an overlap

Information Theory

September 18, 2013 19 / 26



| Information Theory<br>Stream Compression Examples<br>SFE Coding Theory | SFE Coding Theory<br>The parts from<br>a Take sectors<br>$\left(2\pi \lambda_{2}, \dots, \lambda_{n}$ to represent the interval<br>$\left(2\pi \lambda_{2}, \dots, \lambda_{n}, \dots, \lambda_{n}\right)$<br>• the other are parts for all the interval the sectors<br>• the other are parts for all the interval the other and the displacet<br>• the other are parts for all the interval the other and the displacet<br>• the other and the other and the interval the other and the displacet<br>• the other and the other and the interval the other and the displacet<br>• all the other and the other and the other and the displacet<br>• all the other and the other a |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Assume codeword  $z_1 z_2 \ldots z_n$  is equivalent the interval

$$\left[0.z_1z_2\ldots z_n, \ 0.z_1z_2\ldots z_n+\frac{1}{2^n}\right)$$

We can see immediately that prefix free codes are equivalent to non-overlapping intervals.

Colours are just there so we can distinguish adjacent intervals.

| S     | FE Illust       | tration 2             |      |                  |                        |                |                     |
|-------|-----------------|-----------------------|------|------------------|------------------------|----------------|---------------------|
|       | X               | <i>p</i> ( <i>x</i> ) | F(x) | Ē(x)             | $ar{F}(x)$ in binary   | $\ell(x)$      | codeword            |
|       | а               | 0.25                  | 0.25 | 0.125            | 0.0012                 | 3              | 001                 |
|       | b               | 0.25                  | 0.5  | 0.375            | 0.011 <sub>2</sub>     | 3              | 011                 |
|       | с               | 0.2                   | 0.7  | 0.6              | $0.1\overline{0011}_2$ | 4              | 1001                |
|       | d               | 0.15                  | 0.85 | 0.775            | $0.110\overline{0011}$ | <sub>2</sub> 4 | 1100                |
|       | е               | 0.15                  | 1.0  | 0.925            | $0.111\overline{0110}$ | <sub>2</sub> 4 | 1110                |
|       | H(X)            | 2.2855                |      |                  |                        |                |                     |
|       | $E_p\ell$       |                       |      |                  |                        |                | 3.5 bits            |
|       |                 |                       |      |                  |                        |                | per                 |
|       |                 |                       |      |                  |                        |                | symbol              |
|       |                 |                       |      |                  |                        |                |                     |
|       |                 |                       |      |                  |                        |                | <≣> ≣ •ी९(          |
| Matth | ew Roughan (Sch | nool of Mathematic    | al : | Information Theo | ory                    | Septembe       | er 18, 2013 21 / 20 |









## Arithmetic Coding The Coding Step

- We can see the SFE coding isn't the most efficient, but it has the huge advantage that we can build hierarchical codes in a similar way.
- Assume we can estimate

$$p(X_n|X_{n-1},X_{n-2},\ldots,X_1]$$

- Imagine we could construct the SFE code for this
  - if the first bit of that code would result in an interval that is entirely inside the step, then we can use it
  - if not, keep that bit in mind, and then divide the current step into components according to the next probability distribution
  - eventually, we can start fixing some of the old bits
- Iteratively perform these operations, along with probability estimation.

Information Theory

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─注 ─のへの 24 / 26





Matthew Roughan (School of Mathematical

September 18, 2013







