Information Theory and Networks
Lecture 15: Stream Coding

Matthew Roughan
[matthew.roughan@adelaide.edu.au](mailto:matthew.roughan@adelaide.edu.au)
http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide
September 18, 2013

Dr. Egon Spengler: There's something very important I forgot to tell you.
Dr. Peter Venkman: What?
Dr. Egon Spengler: Don't cross the streams.
Dr. Peter Venkman: Why?
Dr. Egon Spengler: It would be bad.
[some time later]
Dr. Egon Spengler: [hesitates] We'll cross the streams.
Dr. Peter Venkman: 'Scuse me Egon? You said crossing the streams was bad!

Dr. Egon Spengler: Not necessarily. There's definitely a very slim chance we'll survive.

Ghost Busters

## Part I

## Stream Coding

## Section 1

Problems and Solutions

## Problem of Block Huffman Coding

```
Information Theory
~
2013-09-1
- Huffman coding needs probabilities
- do you estimate them from the file - two passes?
- or use generic probabilities - not quite accurate for a particular file?
- Blocks of length \(n\) have \(d^{n}\) possible "symbols"
- estimating small probabilities is hard
- do you include the (large) dictionary in the compressed file?
- Huffman needs complete recalculation to change the block size

\section*{Stream Coding}
```

Information Theory

```

- Block Coding:
- fixed set of input symbols (fixed block size)
- same (possibly variable length) codes used through one file or transmission
- transmitter and receiver need the same code dictionary
- Steam Coding:
- process file (or transmission) as it comes
- code dictionary adapts as it goes
- decoder uses same method to construct dictionary as transmitter, and so they don't need to share this

\section*{Section 2}

Stream Compression Examples

Arithmetic Coding


\section*{Lempel-Ziv-Welch (LZW) [ZL78, Wel84]}
- Simple version encodes series of 8-bit data (e.g., ASCII)
- 12 bit "codewords"
- codes from 0-255 represents an 8-bit character (directly)
- codes from 256-4095 refer to a dictionary, based on the data
- goal - replace long, repeated strings with a simple code (number)
- construct the dictionary of strings as you go
- as the file is processed, we get better and better compression (we hope)
- encoding
- dictionary starts with all strings of length 1
- repeat
« find longest string W in dictionary that matches current input
« put dictionary index for W in output, and remove W from input
* add W followed by next symbol in the input to the dictionary
- decoding
- iteratively translate and build the dictionary
- don't need to transmit the dictionary
```

Information Theory
~
%)

```

The GIF image format (1987) uses Lempel-Ziv-Welch. An old utility compress also used it.

\section*{Arithmetic Coding}
```

Information Theory
\infty}\mathrm{ -Stream Compression Examples
LArithmetic Coding

```

- Use an adaptive Bayesian model for the probabilities
- estimate it as we go along
- Encode with a Shannon-Fano-Elias-like code
- Decoder decodes symbols, and uses the same method to estimate probabilities, and hence derive the codes as you go along.

\section*{Bayesian Model}
- Take source alphabet \(\Omega=\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}\) where \(a_{l}\) indicates "end of transmission"
- Source produces \(X_{1}, X_{2}, \ldots \in \Omega\)
- Both source coder, and receiver build a predictive probability distribution
\[
p\left(X_{n}=a_{i} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)
\]
- For example, use Bayesian estimates
- fix probability of \(a_{l}=0.15\)
- iterate Bayes law to get estimates
```

Information Theory
~

# 

LBayesian Model

```

We don't, in general, assume that the \(X_{i}\) are IID.
We must fix \(a_{l}=0.15\) because you won't see that symbol until the end.


Shamon Fano Elisas (SFE) Codin:


- Lets do it for IID symbols:
\[
p\left(X_{n}=a_{i} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)=p\left(X_{n}=a_{i}\right)
\]
- Construct the CDF \(F(x)=P(X \leq x)\)
\[
F(x)=\sum_{a<x} p(a)
\]
and from this a new function
\[
\bar{F}(x)=\sum_{a<x} p(a)+p(x)
\]
- The values \(F(a)\) make sense as codewords, except they may be infinite

\section*{SFE Illustration 1}
```

Information Theory
~
<'
—SFE Illustration 1

```
[CT91, Example 5.9.1, p.103]
Note that even though the code is finite here, it wouldn't be prefix free if we just used the binary for \(\bar{F}\).



\section*{SFE Coding}
```

Information Theory
~
O

```
- Lets do it for IID symbols:
\[
p\left(X_{n}=a_{i} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)=p\left(X_{n}=a_{i}\right)
\]
- Optimal codeword length approximation
\[
\ell\left(a_{i}\right)=\left\lceil\log \left(\frac{1}{p\left(a_{i}\right)}\right)\right\rceil
\]
- Have one extra bit (see why in a second)
\[
\ell\left(a_{i}\right)=\left\lceil\log \left(\frac{1}{p\left(a_{i}\right)}\right)\right\rceil+1
\]
- Truncate the codes from \(\bar{F}\) to this length

\section*{SFE Illustration 1}
```

Information Theory

```


NB: Huffman code for this case achieves the entropy bound. Last bit of the last two could be omitted, but we can't just drop a bit from all of them or it isn't prefix free.

\section*{SFE Coding Theory}

\section*{What are we trying to achieve?}
- Code's related to \(\bar{F}\) (we'll see why later)
- Optimal(ish) (code lengths given by \(\simeq \ell(x)\) above)
- Prefix free (hence need for extra bit)
```

Information Theory

```
~
```

~
O゙
O゙
~

```
    7:


Sft carase many



Denote a number \(x\) rounded down (by say a floor function) to \(m\) digits by

\section*{\(\lfloor x\rfloor_{m}\)}

Note also that
\[
\frac{p(x)}{2}=\bar{F}(x)-F(x-1)
\]
by definition of \(\bar{F}\).

\section*{SFE Coding Theory}

Test prefix free:
- Take a codeword \(z_{1} z_{2} \ldots z_{n}\) to represent the interval
\[
\left[0 . z_{1} z_{2} \ldots z_{n}, \quad 0 . z_{1} z_{2} \ldots z_{n}+\frac{1}{2^{n}}\right)
\]
- the codes are prefix free iff the intervals are disjoint
- to see that, think of the binary code tree
- From above, the intervals corresponding to the codewords must like entirely inside the interval \([F(x-1), F(x))\), so they must be disjoint (see below)
- given the choice of \(\ell(x)\) above, the codewords will be on average 1 bit longer than similar Huffman code, but
- if the codewords are 1 symbols less, then there is the potential for an overlap

Disjoint intervals \(=\) prefix free


\section*{SFE Illustration 2}
\begin{tabular}{r|llllll}
\hline\(X\) & \(p(x)\) & \(F(x)\) & \(\bar{F}(x)\) & \begin{tabular}{l}
\(\bar{F}(x)\) in \\
binary
\end{tabular} & \(\ell(x)\) & codeword \\
\hline a & 0.25 & 0.25 & 0.125 & \(0.001_{2}\) & 3 & 001 \\
b & 0.25 & 0.5 & 0.375 & \(0.011_{2}\) & 3 & 011 \\
c & 0.2 & 0.7 & 0.6 & \(0.1 \overline{0011}_{2}\) & 4 & 1001 \\
d & 0.15 & 0.85 & 0.775 & \(0.110 \overline{0011}_{2} 4\) & 1100 \\
e & 0.15 & 1.0 & 0.925 & \(0.111 \overline{0110}_{2} 4\) & 1110 \\
\hline\(H(X)\) & 2.2855 & & & & 3.5 bits \\
\(E_{p} \ell\) & & & & & \begin{tabular}{l} 
per \\
\end{tabular} & \\
& & & & symbol
\end{tabular}

\section*{SFE Illustration 2}


\section*{SFE Illustration 2}


Matthew Roughan (School of Mathematical !

\section*{Arithmetic Coding}

The Coding Step
- We can see the SFE coding isn't the most efficient, but it has the huge advantage that we can build hierarchical codes in a similar way.
- Assume we can estimate
\[
p\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots, X_{1}\right)
\]
- Imagine we could construct the SFE code for this
- if the first bit of that code would result in an interval that is entirely inside the step, then we can use it
- if not, keep that bit in mind, and then divide the current step into components according to the next probability distribution
- eventually, we can start fixing some of the old bits
- Iteratively perform these operations, along with probability estimation.

\section*{Others}
```

Information Theory
\infty
O

- DEFLATE: png (images), gzip and zip
- Apple Lossless (ALAC - Apple Lossless Audio Codec)
- Free Lossless Audio Codec (FLAC)
- WMA Lossless (Windows Media Lossless)


## Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley and Sons, 1991.

David J. MacKay, Information theory, inference, and learning algorithms, Cambridge University Press, 2011.
Terry Welch, A technique for high-performance data compression, IEEE Computer (1984), 819, http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=\&arnumber= $1659158 \&$ isnumber $=34743 \& t a g=1$.
( Jacob Ziv and Abraham Lempel, Compression of individual sequences via variable-rate coding, IEEE Transactions on Information Theory (1978).

