Information Theory and Networks Lecture 15: Stream Coding

Matthew Roughan <matthew.roughan@adelaide.edu.au> http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > September 18, 2013

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Part I

Stream Coding

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dr. Egon Spengler: There's something very important I forgot to tell you.

- Dr. Peter Venkman: What?
- Dr. Egon Spengler: Don't cross the streams.
- Dr. Peter Venkman: Why?
- Dr. Egon Spengler: It would be bad.

[some time later]

Dr. Egon Spengler: [hesitates] We'll cross the streams. Dr. Peter Venkman: 'Scuse me Egon? You said crossing the streams was bad!

Dr. Egon Spengler: Not necessarily. There's definitely a very slim chance we'll survive.

Ghost Busters

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Section 1

Problems and Solutions

- ∢ ≣ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Problem of Block Huffman Coding

• Huffman coding needs probabilities

- do you estimate them from the file two passes?
- or use generic probabilities not quite accurate for a particular file?
- Blocks of length *n* have *dⁿ* possible "symbols"
 - estimating small probabilities is hard
 - do you include the (large) dictionary in the compressed file?
 - Huffman needs complete recalculation to change the block size

Stream Coding

Block Coding:

- fixed set of input symbols (fixed block size)
- same (possibly variable length) codes used through one file or transmission
- transmitter and receiver need the same code dictionary

Steam Coding:

- process file (or transmission) as it comes
- code dictionary adapts as it goes
- decoder uses same method to construct dictionary as transmitter, and so they don't need to share this

Section 2

Stream Compression Examples

(日) (周) (三) (三)

3

Arithmetic Coding

- RLE (see last lecture)
- Lempel-Ziv(-Welch)
- Arithmetic Coding

< 67 ▶

3

Lempel-Ziv-Welch (LZW) [ZL78, Wel84]

- Simple version encodes series of 8-bit data (e.g., ASCII)
- 12 bit "codewords"
 - codes from 0-255 represents an 8-bit character (directly)
 - codes from 256-4095 refer to a dictionary, based on the data
- goal replace long, repeated strings with a simple code (number)
 - construct the dictionary of strings as you go
 - ▶ as the file is processed, we get better and better compression (we hope)
- encoding
 - dictionary starts with all strings of length 1
 - repeat
 - $\star\,$ find longest string W in dictionary that matches current input
 - $\star\,$ put dictionary index for W in output, and remove W from input
 - $\star\,$ add W followed by next symbol in the input to the dictionary
- decoding
 - iteratively translate and build the dictionary
 - don't need to transmit the dictionary

- 4 週 ト - 4 三 ト - 4 三 ト

- 2

Arithmetic Coding

- Use an adaptive Bayesian model for the probabilities
 - estimate it as we go along
- Encode with a Shannon-Fano-Elias-like code
- Decoder decodes symbols, and uses the same method to estimate probabilities, and hence derive the codes as you go along.

Bayesian Model

- Take source alphabet $\Omega = \{a_1, a_2, \dots, a_l\}$ where a_l indicates "end of transmission"
- Source produces $X_1, X_2, \ldots \in \Omega$
- Both source coder, and receiver build a predictive probability distribution

$$p(X_n = a_i | X_{n-1}, X_{n-2}, \ldots, X_1)$$

- For example, use Bayesian estimates
 - fix probability of $a_I = 0.15$
 - iterate Bayes law to get estimates

Shannon-Fano-Elias (SFE) Coding

• Lets do it for IID symbols:

$$p(X_n = a_i | X_{n-1}, X_{n-2}, \dots, X_1) = p(X_n = a_i)$$

• Construct the CDF $F(x) = P(X \le x)$

$$F(x) = \sum_{a < x} p(a)$$

and from this a new function

$$\bar{F}(x) = \sum_{a < x} p(a) + p(x)$$

• The values F(a) make sense as codewords, except they may be infinite

- 32

X	<i>p</i> (<i>x</i>)	F(x)	$\bar{F}(x)$	$\overline{F}(x)$ in binary	$\ell(x)$	codeword
а	0.25	0.25	0.125	0.001 ₂		
b	0.5	0.75	0.5	0.1 ₂		
с	0.125	0.875	0.8125	0.1101_2		
d	0.125	1.0	0.9375	0.1111_2		
H(X)	1.75					
$E_p\ell$						

イロト イ団ト イヨト イヨト

æ

SFE Coding

• Lets do it for IID symbols:

$$p(X_n = a_i | X_{n-1}, X_{n-2}, \dots, X_1) = p(X_n = a_i)$$

Optimal codeword length approximation

$$\ell(a_i) = \left\lceil \log\left(\frac{1}{p(a_i)}\right) \right\rceil$$

Have one extra bit (see why in a second)

$$\ell(a_i) = \left\lceil \log\left(rac{1}{
ho(a_i)}
ight)
ight
ceil + 1$$

• Truncate the codes from \overline{F} to this length

X	<i>p</i> (<i>x</i>)	F(x)	$\bar{F}(x)$	$\overline{F}(x)$ in binary	$\ell(x)$	codeword
а	0.25	0.25	0.125	0.001 ₂	3	001
b	0.5	0.75	0.5	0.1 ₂	2	10
с	0.125	0.875	0.8125	0.1101_2	4	1101
d	0.125	1.0	0.9375	0.1111_2	4	1111
H(X)	1.75					
E _p ℓ						2.75 bits per symbol

・ロン ・四 ・ ・ ヨン ・ ヨン

3

SFE Coding Theory

What are we trying to achieve?

- Code's related to \overline{F} (we'll see why later)
- Optimal(ish) (code lengths given by $\simeq \ell(x)$ above)
- Prefix free (hence need for extra bit)

SFE Coding Theory

Use the first $\ell(x)$ bits of $\overline{F}(x)$

• possible error in rounding off

$$ar{F}(x) - \lfloor ar{F}(x)
floor_{\ell(x)} < rac{1}{2^{\ell(x)}}$$

take

$$\ell(x) = \left\lceil \log\left(\frac{1}{p(x)}\right) \right\rceil + 1$$

then

$$\frac{1}{2^{\ell(x)}} < \frac{p(x)}{2} = \bar{F}(x) - F(x-1)$$

thus

$$ar{F}(x) - \lfloor ar{F}(x)
floor_{\ell(x)} < ar{F}(x) - F(x-1)$$

• thus the $\ell(x)$ length code is in the interval we want it to be in

SFE Coding Theory

Test prefix free:

• Take a codeword $z_1 z_2 \dots z_n$ to represent the interval

$$\left[0.z_1z_2\ldots z_n, \ 0.z_1z_2\ldots z_n+\frac{1}{2^n}\right)$$

- the codes are prefix free iff the intervals are disjoint
- to see that, think of the binary code tree
- From above, the intervals corresponding to the codewords must like entirely inside the interval [F(x-1), F(x)], so they must be disjoint (see below)
 - ▶ given the choice of ℓ(x) above, the codewords will be on average 1 bit longer than similar Huffman code, but
 - if the codewords are 1 symbols less, then there is the potential for an overlap

イロト イポト イヨト イヨト 二日

Disjoint intervals = prefix free

September 18, 2013 20 / 26

X	<i>p</i> (<i>x</i>)	F(x)	$\bar{F}(x)$	$ar{F}(x)$ in binary	$\ell(x)$	codeword
а	0.25	0.25	0.125	0.0012	3	001
b	0.25	0.5	0.375	0.011 ₂	3	011
С	0.2	0.7	0.6	$0.1\overline{0011}_2$	4	1001
d	0.15	0.85	0.775	0.1100011	₂ 4	1100
e	0.15	1.0	0.925	$0.111\overline{0110}$	₂ 4	1110
H(X)	2.2855					
E _p ℓ						3.5 bits per symbol

イロト イヨト イヨト イヨト

æ

Matthew Roughan (School of Mathematical

Arithmetic Coding

The Coding Step

- We can see the SFE coding isn't the most efficient, but it has the huge advantage that we can build hierarchical codes in a similar way.
- Assume we can estimate

$$p(X_n|X_{n-1},X_{n-2},\ldots,X_1)$$

- Imagine we could construct the SFE code for this
 - if the first bit of that code would result in an interval that is entirely inside the step, then we can use it
 - if not, keep that bit in mind, and then divide the current step into components according to the next probability distribution
 - eventually, we can start fixing some of the old bits
- Iteratively perform these operations, along with probability estimation.

A B K A B K

- DEFLATE: png (images), gzip and zip
- Apple Lossless (ALAC Apple Lossless Audio Codec)
- Free Lossless Audio Codec (FLAC)
- WMA Lossless (Windows Media Lossless)

3

Further reading I

- Thomas M. Cover and Joy A. Thomas, *Elements of information theory*, John Wiley and Sons, 1991.
- David J. MacKay, Information theory, inference, and learning algorithms, Cambridge University Press, 2011.
- Terry Welch, A technique for high-performance data compression, IEEE Computer (1984), 819, http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber= 1659158&isnumber=34743&tag=1.
- Jacob Ziv and Abraham Lempel, *Compression of individual sequences via variable-rate coding*, IEEE Transactions on Information Theory (1978).