
Information Theory and Networks
Lecture 15: Stream Coding

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/

Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide

September 18, 2013

http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/
http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/


Part I

Stream Coding

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 2 / 26



Dr. Egon Spengler: There’s something very important I
forgot to tell you.
Dr. Peter Venkman: What?
Dr. Egon Spengler: Don’t cross the streams.
Dr. Peter Venkman: Why?
Dr. Egon Spengler: It would be bad.

[some time later]

Dr. Egon Spengler: [hesitates] We’ll cross the streams.
Dr. Peter Venkman: ’Scuse me Egon? You said crossing the
streams was bad!

...
Dr. Egon Spengler: Not necessarily. There’s definitely a very
slim chance we’ll survive.

Ghost Busters

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 3 / 26



Section 1

Problems and Solutions

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 4 / 26



Problem of Block Huffman Coding

Huffman coding needs probabilities
I do you estimate them from the file – two passes?
I or use generic probabilities – not quite accurate for a particular file?

Blocks of length n have dn possible “symbols”
I estimating small probabilities is hard
I do you include the (large) dictionary in the compressed file?
I Huffman needs complete recalculation to change the block size

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 5 / 26



Stream Coding

Block Coding:
I fixed set of input symbols (fixed block size)
I same (possibly variable length) codes used through one file or

transmission
I transmitter and receiver need the same code dictionary

Steam Coding:
I process file (or transmission) as it comes
I code dictionary adapts as it goes
I decoder uses same method to construct dictionary as transmitter, and

so they don’t need to share this

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 6 / 26



Section 2

Stream Compression Examples

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 7 / 26



Arithmetic Coding

RLE (see last lecture)

Lempel-Ziv(-Welch)

Arithmetic Coding

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 8 / 26



Lempel-Ziv-Welch (LZW) [ZL78, Wel84]

Simple version encodes series of 8-bit data (e.g., ASCII)

12 bit “codewords”
I codes from 0-255 represents an 8-bit character (directly)
I codes from 256-4095 refer to a dictionary, based on the data

goal – replace long, repeated strings with a simple code (number)
I construct the dictionary of strings as you go
I as the file is processed, we get better and better compression (we hope)

encoding
I dictionary starts with all strings of length 1
I repeat

F find longest string W in dictionary that matches current input
F put dictionary index for W in output, and remove W from input
F add W followed by next symbol in the input to the dictionary

decoding
I iteratively translate and build the dictionary
I don’t need to transmit the dictionary

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 9 / 26



Arithmetic Coding

Use an adaptive Bayesian model for the probabilities
I estimate it as we go along

Encode with a Shannon-Fano-Elias-like code

Decoder decodes symbols, and uses the same method to estimate
probabilities, and hence derive the codes as you go along.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 10 / 26



Bayesian Model

Take source alphabet Ω = {a1, a2, . . . , aI} where aI indicates “end of
transmission”

Source produces X1,X2, . . . ∈ Ω

Both source coder, and receiver build a predictive probability
distribution

p(Xn = ai |Xn−1,Xn−2, . . . ,X1)

For example, use Bayesian estimates
I fix probability of aI = 0.15
I iterate Bayes law to get estimates

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 11 / 26



Shannon-Fano-Elias (SFE) Coding

Lets do it for IID symbols:

p(Xn = ai |Xn−1,Xn−2, . . . ,X1) = p(Xn = ai )

Construct the CDF F (x) = P(X ≤ x)

F (x) =
∑
a<x

p(a)

and from this a new function

F̄ (x) =
∑
a<x

p(a) + p(x)

The values F (a) make sense as codewords, except they may be infinite

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 12 / 26



SFE Illustration 1

X p(x) F (x) F̄ (x) F̄ (x) in
binary

`(x) codeword

a 0.25 0.25 0.125 0.0012

b 0.5 0.75 0.5 0.12

c 0.125 0.875 0.8125 0.11012

d 0.125 1.0 0.9375 0.11112

H(X ) 1.75

Ep`

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 13 / 26



SFE Illustration 1

a b c d
0

0.2

0.4

0.6

0.8

1

1.2

F̄ = 0.1250 = 0.0012

F̄ = 0.5000 = 0.12

F̄ = 0.8125 = 0.11012

F̄ = 0.9375 = 0.11112

symbol

C
D
F

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 14 / 26



SFE Coding

Lets do it for IID symbols:

p(Xn = ai |Xn−1,Xn−2, . . . ,X1) = p(Xn = ai )

I Optimal codeword length approximation

`(ai ) =

⌈
log

(
1

p(ai )

)⌉
I Have one extra bit (see why in a second)

`(ai ) =

⌈
log

(
1

p(ai )

)⌉
+ 1

I Truncate the codes from F̄ to this length

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 15 / 26



SFE Illustration 1

X p(x) F (x) F̄ (x) F̄ (x) in
binary

`(x) codeword

a 0.25 0.25 0.125 0.0012 3 001

b 0.5 0.75 0.5 0.12 2 10

c 0.125 0.875 0.8125 0.11012 4 1101

d 0.125 1.0 0.9375 0.11112 4 1111

H(X ) 1.75

Ep` 2.75
bits per
symbol

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 16 / 26



SFE Coding Theory

What are we trying to achieve?

Code’s related to F̄ (we’ll see why later)

Optimal(ish) (code lengths given by ' `(x) above)

Prefix free (hence need for extra bit)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 17 / 26



SFE Coding Theory

Use the first `(x) bits of F̄ (x)

possible error in rounding off

F̄ (x)− bF̄ (x)c`(x) <
1

2`(x)

take

`(x) =

⌈
log

(
1

p(x)

)⌉
+ 1

then
1

2`(x)
<

p(x)

2
= F̄ (x)− F (x − 1)

thus
F̄ (x)− bF̄ (x)c`(x) < F̄ (x)− F (x − 1)

thus the `(x) length code is in the interval we want it to be in

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 18 / 26



SFE Coding Theory

Test prefix free:

Take a codeword z1z2 . . . zn to represent the interval[
0.z1z2 . . . zn, 0.z1z2 . . . zn +

1

2n

)
I the codes are prefix free iff the intervals are disjoint
I to see that, think of the binary code tree

From above, the intervals corresponding to the codewords must like
entirely inside the interval

[
F (x − 1),F (x)

)
, so they must be disjoint

(see below)
I given the choice of `(x) above, the codewords will be on average 1 bit

longer than similar Huffman code, but
I if the codewords are 1 symbols less, then there is the potential for an

overlap

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 19 / 26



Disjoint intervals = prefix free

1.0

0.0

1

0

00

01

000

001

011

0010
0011
0100
0101

010

[1/2, 1/2+1/2)

[3/8, 3/8+1/8)
[5/16, 5/16+1/16)
[4/16, 4/16+1/16)
[3/16, 3/16+1/16)
[2/16, 2/16+1/16)
[0, 0+1/8)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 20 / 26



SFE Illustration 2

X p(x) F (x) F̄ (x) F̄ (x) in
binary

`(x) codeword

a 0.25 0.25 0.125 0.0012 3 001

b 0.25 0.5 0.375 0.0112 3 011

c 0.2 0.7 0.6 0.100112 4 1001

d 0.15 0.85 0.775 0.11000112 4 1100

e 0.15 1.0 0.925 0.11101102 4 1110

H(X ) 2.2855

Ep` 3.5 bits
per
symbol

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 21 / 26



SFE Illustration 2

a b c d e
0

0.2

0.4

0.6

0.8

1

1.2

F̄ = 0.1250 = 0.0012

F̄ = 0.3750 = 0.0112

F̄ = 0.6000 = 0.100110011001100... 2

F̄ = 0.7750 = 0.110001100110010... 2

F̄ = 0.9250 = 0.111011001100110... 2

symbol

C
D
F

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 22 / 26



SFE Illustration 2

a b c d e
0

0.2

0.4

0.6

0.8

1

1.2

codeword = 0012=0.1250

codeword = 0112=0.3750

codeword = 10012=0.5625

codeword = 11002=0.7500

codeword = 11102=0.8750

symbol

C
D
F

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 23 / 26



Arithmetic Coding
The Coding Step

We can see the SFE coding isn’t the most efficient, but it has the
huge advantage that we can build hierarchical codes in a similar way.

Assume we can estimate

p(Xn|Xn−1,Xn−2, . . . ,X1)

Imagine we could construct the SFE code for this
I if the first bit of that code would result in an interval that is entirely

inside the step, then we can use it
I if not, keep that bit in mind, and then divide the current step into

components according to the next probability distribution
I eventually, we can start fixing some of the old bits

Iteratively perform these operations, along with probability estimation.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 24 / 26



Others

DEFLATE: png (images), gzip and zip

Apple Lossless (ALAC - Apple Lossless Audio Codec)

Free Lossless Audio Codec (FLAC)

WMA Lossless (Windows Media Lossless)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 25 / 26



Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

David J. MacKay, Information theory, inference, and learning algorithms,
Cambridge University Press, 2011.

Terry Welch, A technique for high-performance data compression, IEEE Computer
(1984), 819, http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=
1659158&isnumber=34743&tag=1.

Jacob Ziv and Abraham Lempel, Compression of individual sequences via
variable-rate coding, IEEE Transactions on Information Theory (1978).

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 26 / 26

http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=1659158&isnumber=34743&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=1659158&isnumber=34743&tag=1

	Stream Coding
	Problems and Solutions
	Stream Compression Examples


