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Gambling and Information Theory
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If fighting is sure to result in victory, then you must fight,
even though the ruler forbid it;
If fighting will not result in victory, then you must not fight
even at the ruler’s bidding.

Sun Tzu, The Art of War, Chapter 10, 23
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Horse Racing
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Fixed-Odds Horse Racing

Pool of money betting on horses
I odds: expressed as o-for-1 or (o − 1)-to-1
I probability of success by probability of failure
I assume no track take, no commissions

What’s the best strategy?
I one-off bet
I multiple ongoing bets, or parlayed bets
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Fixed-Odds Horse Racing

Example

Here, only bet on horse win (not other bets like place etc.)

Odds are fixed by a bookie

We use o-for-1 convention

Horse Odds

1 10
2 2
3 20
4 5
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Betting Strategies

One-off bet: all in
I equivalent: maximizing arithmetic mean

Parlayed bets: Kelly criterion
I equivalent: maximizing geometric mean

What happens with all-in for parlayed bets?

Note: payout asymmetry most important

Make sure your capital survives before it can compound
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The Kelly Criterion
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Section 2

The Kelly Criterion
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Some History

Developed by J. L. Kelly at Bell Labs; Shannon reviewed
I Texan tough guy, gunslinger, daredevil pilot and mathematician!

Wirelines were used to transmit information between bookies
I application: placing bets on horses
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Some History

Recommended read: William Poundstone, “Fortune’s Formula”, 2005, a

layman version of the story behind the Kelly criterion, Shannon’s forays

into the casino and stock market, and Edward Thorp, a mathematician

who figured out card counting for Blackjack and later ran a successful

hedge fund Princeton Newport.

Formulation

Assume m horses, each with i.i.d. probability of winning pi

Assume starting capital S0 = 1

Odds: oi , alternative (1 + ri ), ri the rate of return

Play for T races
I allocate bi fraction of capital on horse i
I capital at T : ST =

∏T
t=1

∏m
i=1 bioi

Objective: assuming fully invested, choose allocation bi ≥ 0,∑
i bi = 1 to maximize ST
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Maximising Wealth Growth

Assume T →∞
I maximise E [

∑m
i=1 log bioi ] subject to constraints

I doubling rate: W (b,p) :=
∑m

i=1 pi log bioi

Solution: the Kelly criterion, or log-optimal wealth growth
I answer: b?i = pi , proportional gambling (for fair odds)
I solve using standard KKT conditions, or log-sum inequality

Nature of solution will depend on odds: see [CT91, Exercise 6.2]
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Maximising Wealth Growth

Odds can be classified according to iλ :=
∑m

i=1
1
oi

. If λ < 1 these are

superfair odds, λ = 1 are fair odds and λ > 1 are subfair odds. For

subfair odds, proportional betting doesn’t apply as some odds may be so

poor that the criterion tells us not to bet. The solution is found via a

water filling algorithm. The bottomline, however, is that the Kelly

criterion only tells us to bet when the odds are favourable, otherwise

don’t bet.

Example Run of Kelly’s Strategy
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A Simple Bet

Say a biased coin toss, win if heads, lose if tails
I heads with probability p, q otherwise
I each round, add $1 to bet

Odds: o-for-1 (remember: win-lose event)

Kelly solution: b? = op−q
o = p(o+1)−1

o
I what does it mean if o = q/p?
I what does it mean when b? < 0 (o < q/p)?
I what about b? > 1?

A simple way to remember (for two events)

b? =
edge

odds
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A Simple Bet

The case b? > 1 can occur when the Kelly criterion is applied to odds

coming from a continuous probability distribution.

Simple Bet: Payoff
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Simple Bet: Under and Overbetting

There is no gain in overbetting: growth decreases, risk increases

Sweet spot: full Kelly for maximum wealth growth

In practice, partial Kelly more applicable, i.e. αb∗i
I with α fraction, only α2 volatility
I more robust to error in estimating returns
I lower wealth growth compared to full Kelly
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Simple Bet: Under and Overbetting

Section 3

Downsides
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Caveats

Strategy is guaranteed to beat any other strategy on wealth growth

BUT Strategy is asymptotically optimal: assume playing forever

No guarantee to win in the short term (or at all), just the best chance

Psychologically unsettling: imagine capital dropping 60% right before
tripling!

I partial Kelly strategies trade smoothness with growth rate

Guaranteed not to go to ruin
I BUT assumes capital infinitely divisible
I capital could be 10−10 but hey, at least not bankrupt!
I can show limT→∞ P(ST > ε) = 0, for any ε > 0

Assumes know the probability of winning: not true in real life
I again, half Kelly strategies help: gives a safety margin
I estimation methods (e.g. maximum entropy, shrinkage)
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Caveats

A link between shrinkage estimation and why half Kelly strategies work

well in practice is the paper by Rising and Wyner, “Partial Kelly

Portfolios and Shrinkage Estimators”, 2012 IEEE Symposium on

Information Theory, pages 1618–1622.

Criticism from Modern Finance

Kelly criterion assumes maximizing growth rate exponent

Called the log-utility function in finance

Criticism 1: not everybody would want to maximise growth rate
exponent

I does not take into account risk-averseness (or “sleep test”)
I definition of risk in finance: volatility
I different utilities for different folks

Criticism 2: time horizon, as discussed, need very long term

Counter-argument: not many people want to do with less money

“Money can’t buy you happiness, but love can’t get you a Ferrari.”
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Approximation of the Stock Market

Suppose m risky assets, each with random “odds” ri in one
investment period

One asset with return r0 is deterministic

Assume starting capital S0 = 1

The return vector r, with µr = E [r], Σ = E [(r − r01)(r − r01)T ]
I Σ is full rank
I correlations apply only “spatially”

Derive the optimal allocation b to optimise the wealth doubling rate
I optimise E [log(r0 + bT (r − r01)]

Assume no constraints on b

For what return distribution is this allocation optimal?
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Approximation of the Stock Market

Hint: use a Taylor series expansion of the objective around

b0 = (0, 0, · · · , 0) to form a quadratic optimisation problem. r0 is

generally chosen to have a zero risk return, known as the risk free rate.

Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.
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