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Part I

Gambling with Side Information
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A good hockey player plays where the puck is. A great hockey
player plays where the puck is going to be.

Wayne Gretzky
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Section 1

More about Horse Racing
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Horse Racing Redux

Suppose you know: horse 3 is an older horse, fatigues easily
I how has your edge changed?
I what strategy should you employ?

Horse Odds

1 10
2 2
3 20
4 5
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Background

Kelly’s original paper talks about “private wire”

AT&T’s main customers were horse racing rackets
I transmit race results from East to West Coast
I some races allow bets up until the results
I lag between East and West Coast in taking bets

Mostly mob controlled

Title change to paper to remove “unsavoury” elements
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Reinterpretation of Doubling Rate

Write ri = 1/oi , r is the bookie’s estimate of horse win probabilities
I technically, this has been determined by the bettors themselves

Recall doubling rate: W (b,p) =
∑

i pi log bioi
Similarly, W (b,p) = D(p || r)− D(p ||b)

I comparison between estimates of the true winning distribution between
the bookie and gambler

I when does the gambler do better?

Special case – uniform odds: W ∗(p) = D(p || 1m1) = logm − H(p)
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Section 2

Side Information
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Incorporating Side Information

Based on reinterpretation, want to minimise KL divergence
I any form of side information can provide better estimates

Let X ∈ {1, 2, · · · ,m} denote the horse that wins the race

Consider (X ,Y ), where Y is the side information
I p(x , y) = p(y)p(x |y) is the joint distribution
I betting b(x |y) ≥ 0,

∑
x b(x |y) = 1

I given Y = y , now want to estimate p(x | y)
I clearly, the better the estimate, the better wealth growth rate
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Effect on Doubling Rate

Unconditional doubling rate

W ∗(X ) := max
b(x)

∑
x

p(x) log b(x)o(x)

Conditional doubling rate

W ∗(X |Y ) := max
b(x |y)

∑
x ,y

p(x , y) log b(x |y)o(x)

Want to find the bound on the increase ∆W = W ∗(X |Y )−W ∗(X )

Turns out: ∆W = I (X ;Y )
I by Kelly, b∗(x |y) = p(x |y)
I calculate W ∗(X |Y = y), then compute W ∗(X |Y ), then take difference

In turn, this is upper bounded by the channel capacity
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Dependent Horse Races

Side information can come from past performance of the horses
I if horse is performing well consistently, then more likely for it to win

For each race i , bet conditionally (fair odds)
I b∗(xi |xi−1, · · · , x1) = p(xi |xi−1, · · · , x1)

Let’s assume fair odds (m-for-1), then after n races,

1

n
E [log Sn] = logm − H(X1,X2, · · · ,Xn)

n

Link this with entropy rate by taking n→∞

lim
n→∞

1

n
E [log Sn] + H(X ) = logm

Expectation can be removed if Sn is ergodic (property holds w.p. 1)
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Betting Sequentially vs. Once-off

Consider a card game: red and black
I a deck of 52 cards, 26 red, 26 black
I gambler places bets on whether the next card is red or black
I payout: 2-for-1 (fair for equally probably red/black cards)

Play this sequentially
I what are the proportions we should bet? (hint: use past information)

Play this once-off for all
(52
26

)
sequences

I proportional betting allocates 1/
(
52
26

)
wealth on each sequence

Both schemes are equivalent: why?

S∗52 =
252(52
26

) = 9.08

Return does not depend on actual sequence: sequences are typical
(c.f. AEP)
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Part II

Data Compression and Gambling
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Gambling-Based Compression

Consider X1,X2, · · · ,Xn a sequence of binary random variables to
compress

Gambling allocations are b(xk+1|x1, x2, · · · , xk) ≥ 0 with∑
xk+1

b(xk+1|x1, x2, · · · , xk) = 1

Odds: uniform 2-for-1

Wealth:

Sn = 2n
n∏

k=1

b(xk+1|x1, x2, · · · , xk) = 2nb(x1, x2, · · · , xn)

Idea: use b(x1, x2, · · · , xn) as a proxy for p(x1, x2, · · · , xn), if Sn is
maximised, then have log-optimal and best compression
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Algorithm: Encoding

Assumption: both encoder and decoder knows n

Encoding:
I arrange 2n sequences lexicographically
I sees x(n), calculate wealth Sn(x ′(n)) for all x ′(n) ≤ x(n)
I compute F (x(n)) =

∑
x′(n)≤x(n) 2−nSn(x ′(n)), where F (x(n)) ∈ [0, 1]

I express F (x(n)) in binary decimal to k = dn − log Sn(x(n))e accuracy
I codeword of F (x(n)): .c1c2 · · · ck
I the sequence c(k) = (c1, c2, · · · , ck) is transmitted to the decoder
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Algorithm: Decoding

Decoding:
I computes all Sn(x ′(n)) for all 2n sequences exactly; knows F (x ′(n)) for

any x ′(n)
I calculate F (x ′(n)) in lexicographical ordering until first time output

exceeds .c(k): determines index
I size of 2−nS(x(n)) ensures uniqueness: no other x ′(n) will have this

wealth value

Bits required: k , bits saved: n − k = blog(Sn(x(n)))c
With proportional gambling, Sn(x(n)) = 2np(x(n)), so
E [k] ≤ H(X1,X2, · · · ,Xn) + 1
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Estimating Entropy of English

Use the algorithm to estimate the entropy per letter of English

Odds: 27-for-1 (including space, but no punctuations)

Wealth: Sn = (27)nb(x1, x2, · · · , xn)

After n rounds of betting

E

[
1

n
log Sn

]
≤ log 27− H(X )

Assuming English is ergodic, Ĥ(X ) = log 27− 1
n log Sn converges to

H(X ) w.p. 1

Example for “Jefferson the Virginian” gives 1.34 bits per letter
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.
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