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The Stock Market
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Put all your eggs in one basket and then watch that basket.

Mark Twain, Pudd’nhead Wilson and Other Tales
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Basics of the Stock Market
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Stock Market

“Market” referred to is really the secondary market
I primary market deals with the issuance of stock

Consider m assets
I one asset has the risk-free rate: theoretical zero risk
I our goal: construct a portfolio i.e. allocation of assets with exponential

wealth growth

We assume no
I Short selling
I Leveraging
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Basics of the Stock Market

Stock Market

� The risk free rate is the theoretical return with zero risk. In reality, this is
often approximated by treasury bonds (although it really depends on the
country, e.g. Greece is an exception)

� Short selling refers to the practice of making money from securities that are
falling in price. It works as follows: the trader borrows securities from a
lender, then immediately sells them off, and buys them back at a later time
when the securities are much cheaper than the original sale price, so as to
return the securities to the lender. The trader thus profits from the drop in
price of the security.

� Leveraging is essentially borrowing money from a lender to invest. The
return to the trader is the gain of capital of the security (and associated
dividends) minus the interest that has to be paid back to the lender.

Some Definitions

We look at day-to-day fluctuations of the stock prices

Stock market X = (X1,X2, · · · ,Xm), Xi ≥ 0
I our universe of stocks is m
I Xi price relative: (price at start of day)/(price at end of day)
I F (x): underlying distribution of Xi s

The portfolio b = (b1, b2, · · · , bm), bi ≥ 0,
∑m

i=1 bi = 1

The wealth relative S = bTX

Investment period n days results in Sn =
∏n

i=1 b
T
i Xi
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Section 2

Log-Optimal Portfolios
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Section 2

Log-Optimal Portfolios
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Log-Optimal Portfolios

Optimising Growth Rate

Want to maximise W (b,F ) := E [log S ]
I W ∗(F ) := maxb W (b,F )
I portfolio b∗ achieving W ∗(F ) is the log-optimal portfolio

Suppose price relatives are i.i.d. according to f (x). Assume constant
rebalancing with allocation b∗, so S∗n =

∏n
i=1 b

∗TXi . Then,

1

n
log S∗n →W ∗ with probability 1.

Implication: regardless of current wealth, keep allocations between
assets constant!

Can we justify constant rebalancing portfolios beyond i.i.d.? Yes, for
stationary markets, conditional allocation
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Optimising Growth Rate



Shannon’s Volatility Pumping

Constant rebalancing portfolio (CRP): suggested by Shannon in a
lecture at MIT in the 1960s

Shannon used geometric Wiener to model the price relatives

CRPs essentially exploit volatility of the price relatives
I the higher the price volatilty between assets, the higher the excess

returns
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Shannon’s Volatility Pumping

CRP vs. Buy and Hold

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

10
6

10
8

Days

C
a
p
it
a
l

 

 

Buy−and−hold 1

Buy−and−hold 2

CRP

Paul Tune (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 10 / 25

CRP vs. Buy and Hold

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

10
6

10
8

Days

C
a
p
it
a
l

 

 

Buy−and−hold 1

Buy−and−hold 2

CRP

2
0
1
3
-0
9
-1
8

Information Theory

Log-Optimal Portfolios

CRP vs. Buy and Hold



Karush-Kuhn-Tucker Characterisation

Observe the admissible portfolios form an m-simplex B
Karush-Kuhn-Tucker (KKT) conditions yield:

E

[
Xi

b∗TX

]
=

{
1 if b∗i > 0

0 if b∗i = 0

Implication: portfolio at least as good as best stock return on
average

KKT conditions also imply:

E

[
log

S

S∗

]
≤ 0 for all S iff E

[
S

S∗

]
≤ 1 for all S .

Also, E
[
b∗i Xi

b∗TX

]
= b∗i E

[
Xi

b∗TX

]
= b∗i (c.f. Kelly criterion)
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Karush-Kuhn-Tucker Characterisation

Wrong Belief

In horse racing, side information improves wealth growth rate

Suppose investor believes underlying distribution is G (x) instead of
F (x): what is the impact?

I end up using allocation bG instead of bF
I characterise increase in growth rate

∆W = W (bF ,F )−W (bG ,G )

Turns out ∆W ≤ D(F ||G ) (proof: Jensen’s inequality and KKT
condition)
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Log-Optimal Portfolios

Wrong Belief

Notice the similarity to the Kelly gambler. The better the estimate of an

investor regarding the return distribution of the assets, then better the

performance of the portfolio.



Side Information

Result can be used to show ∆W ≤ I (X;Y ), equality holds if it is the
horse race i.e. return due to win or loss

In real life: private insider trading can significantly increase wealth
I e.g. buying stock before press release of profit upgrades or sensitive

announcement
I practice is banned in most developed countries
I insider trading must be declared in public records

Information asymmetry lead to significant (dis)advantages, not just
wealth-wise
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Side Information

Incidentally, looking at when insiders of a company (CEO, CFO, directors,

etc.) purchase or sell stocks of their own company can provide signals

about the value of the stock; see Chapter 9 of Wesley Gray and Tobias

Carlisle, “Quantitative Value”, Wiley Finance, 2012. See also Richard

Zeckhauser, “Investing in the Unknown and Unknowable”, Capitalism

and Society, Vol. 1, No. 2, Article 5, 2006 about information asymmetry.

Causality

Nothing said about causal strategies: in real life, not possible to
invest in hindsight

Nonanticipating or causal portfolio: sequence of mappings
bi : Rm(i−1) → B, with the interpretation bi (x1, · · · , xi−1) used on
day i

Suppose Xi drawn i.i.d. from F (x), Sn is wealth relative from any
causal strategy,

lim sup
n→∞

1

n
log

Sn
S∗n
≤ 0 with probability 1.

Caveat: theorem does not say for a fixed n, log-optimal portfolio
does better than any strategy
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Part II

Universal Portfolios
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Part II

Universal Portfolios
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Background

Previous discussions assume F is known

What’s the best we can do, if F is not known?
I use best CRP based on hindsight as benchmark
I think of something (clever) to approach this benchmark

Needs to be (somewhat) practical
I causal strategy
I universal: distribution free strategy

Solution: adaptive strategy
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Finite Horizon

Assume n is known in advance, xn = (x1, · · · , xn) is the stock market
sequence

Theorem: For any causal strategy b̂i (·),

max
b̂i (·)

min
x1,··· ,xn

Ŝn(xn)

S∗n (xn)
= Vn

Vn is the normalisation factor, for reasons clearer later on

Nothing said about the underlying distribution: distribution free!
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Finite Horizon

Finite Horizon: Big Picture

Big Picture: look at all the outcomes length n, allocate wealth in
hindsight, then construct best causal strategy from the optimal

Has to perform close to optimal under “adversarial” outcomes
I if m = 2, outcomes are ((1, 0)T , (1, 0)T , · · · , (1, 0)T ), clearly best

hindsight strategy is to allocate only to stock 1
I without hindsight, might want to “spread” allocation to maximise

return, minimise loss
I b̂ = (1/2, 1/2) but will be 2n away from best strategy, need some form

of adaptation
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Finite Horizon: Construction

By optimality of CRPs, only need to compare the best CRP to the
causal strategies

Consider the case m = 2, can generalise from this case

Key idea: convert Sn(xn) =
∏n

i=1 b
TXi to

Sn(xn) =
∑

jn∈{1,2}n

n∏
i=1

bi ,ji

n∏
i=1

xi ,ji =
∑

jn∈{1,2}n
w(jn)x(jn)

Now, problem is about determining allocation w(jn) to 2n stocks
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Finite Horizon: Construction II

With 2 stocks, w(jn) =
∏n

i=1 b
k(1− b)n−k , k number of times stock

1 price > stock 2 price
I what is the optimal allocation b∗ for this?∑
jn w

∗(jn) > 1 because best CRP has benefit of hindsight: can
allocate more to the best sequences

I causal strategy does not have this hindsight
I make ŵ(jn) proportional to w∗(jn) by normalisation (using Vn)

Then, find the optimal allocation for adversarial sequences
I what is the best allocation, if at each time step in a sequence, exactly

one stock yields non-zero return?

Putting these two together can show

Vn ≤ max
b̂i (·)

min
x1,··· ,xn

Ŝn(xn)

S∗n (xn)
≤ Vn
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I make ŵ(jn) proportional to w∗(jn) by normalisation (using Vn)

Then, find the optimal allocation for adversarial sequences
I what is the best allocation, if at each time step in a sequence, exactly

one stock yields non-zero return?

Putting these two together can show

Vn ≤ max
b̂i (·)

min
x1,··· ,xn
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Finite Horizon: Construction II

The normalisation factor Vn in [CT91, Theorem 16.7.1] differs from the

one in the proof in two ways: 1. the proof Vn is for case m = 2; 2. the

one in the theorem has been approximated using the asymptotic

equipartition property.



Finite Horizon: Sequential

Finally, need to convert back to the causal portfolio mapping

For allocation to stock 1 at day i , sum over all sequences with 1 in
position i

b̂i ,1(xi−1) =

∑
j i−1∈mi−1 ŵ(j i−1)x(j i−1)∑

j i∈mi ŵ(j i )x(j i−1)

Algorithm enumerates over all mn sequences: computationally
prohibitive

Asymptotics yield, for m = 2 and all n, 1
2
√
n+1
≤ Vn ≤ 2√

n+1

Observe:

lim
n→∞

1

n
log

Ŝn(xn)

S∗n (xn)
= lim

n→∞

1

n
logVn = 0

for any xn
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Finite Horizon: Sequential

w(j i ) is the weight placed on all sequences jn (the full sequence) that

start with j i , while x(j i−1) is the corresponding return of those sequences.

Horizon-Free

Two tier process: think of all CRPs with various b as mutual funds

Now, we allocate our wealth according to a distribution µ(b) to all
these funds

I each fund gets dµ(b) of wealth
I some will perform better than others, one is the best CRP in hindsight

What kind of distribution should one choose? (Hint: think
adversarial)
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Horizon-Free

Idea: Choose a distribution µ(b) that spreads over all CRPs to
maximise

Ŝ(xn) =

∫
B
Sn(b, xn)dµ(b)

Choose allocation b̂i+1(xi ) =
∫
B bSi (b,x

i )dµ(b)∫
B Si (b,xi )dµ(b)

I interpretation: numerator is weighted performance of the fund,
denominator is total wealth

I best performing CRP dominates overall, especially as n→∞
Allocation results in

Ŝn(xn)

S∗n (xn)
≥ min

jn

∫
B
∏n

i=1 bjidµ(b)∏n
i=1 b

∗
ji

With the right distribution, for e.g. the Dirichlet( 1
2 ,

1
2 ) for m = 2,

lim
n→∞

1

n
log

Ŝn(xn)

S∗n (xn)
= 0
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Caveats

There is no assumption on brokerage fees
I in real life, a commission is charged by the broker for any trade
I CRP relies on daily(!) rebalancing for best performance

Optimal for a long enough investment horizon

Relies on the volatility between stocks
I simulations show that it performs poorly otherwise
I need the daily rebalancing to exploit volatility
I longer horizons such as a month or year less volatile (in general)

Computationally impractical
I finite horizon: need to evaluate over all possible mi sequences on day i ,

combinatorial explosion
I horizon free: need to work out the integral of returns over the simplex
B

Paul Tune (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 24 / 25

Caveats

There is no assumption on brokerage fees
I in real life, a commission is charged by the broker for any trade
I CRP relies on daily(!) rebalancing for best performance

Optimal for a long enough investment horizon

Relies on the volatility between stocks
I simulations show that it performs poorly otherwise
I need the daily rebalancing to exploit volatility
I longer horizons such as a month or year less volatile (in general)

Computationally impractical
I finite horizon: need to evaluate over all possible mi sequences on day i ,

combinatorial explosion
I horizon free: need to work out the integral of returns over the simplex
B2

0
1
3
-0
9
-1
8

Information Theory

Caveats



Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

Paul Tune (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 25 / 25


	The Stock Market
	Basics of the Stock Market
	Log-Optimal Portfolios

	Universal Portfolios

