Information Theory and Networks
Lecture 19: Complexity

Matthew Roughan
<matthew.roughan@adelaide.edu.au>
http://www.maths.adelaide.edu.au/matthew.roughan/
Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide

September 18, 2013

http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/
http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/

Matthew Roughan (School of Mathematical ¢

Part |

Complexity

For every problem there is a solution which is simple, clean
and wrong.
Henry Louis Mencken

Matthew Roughan (School of Mathematical ¢ September 18, 2013 3/15

Simplicity and Occam'’s razor

Pluralitas non est ponenda sine neccesitate
William of Ockham (ca. 1285-1349)

@ "Plurality should not be posited without necessity.”
@ alternative versions

» “Entia non sunt multiplicanda praeter necessitatem”, or “Entities
should not be multiplied beyond necessity”

» “in vain we do by many which can be done by means of fewer”

» "“if two things are sufficient for the purpose of truth, it is superfluous to
suppose another”

> Principle of Parsimony

Matthew Roughan (School of Mathematical ¢ September 18, 2013 4/15

Quidquid latine dictum sit, altum viditur.

Matthew Roughan (School of Mathematical ¢

Complexity

@ Occam's Razor is often interpreted as “simple theories are best” (all
else being equal)

@ But what do “simple” or “complex” mean?

>

computational complexity

* computational resources (e.g. CPU or memory) required by an
algorithm

emergence and self-organization
* e.g. flocking behaviour
* e.g. Conway’s game of life
* e.g. consciousness
non-linearity and “chaos”
irreducible systems
* systems that are more than the sum of their parts?
programming complexity
* metrics for describing how complicated a computer program is
* e.g., length of code, vocabulary,
* e.g., count of linearly independent paths through the code

Matthew Roughan (School of Mathematical ¢ September 18, 2013

6/15

“complicated” vs “complex”

Warren Weaver, 1948
o disorganised complexity:
> large number of relationships, often can be considered almost
independent

» “complicated” = lots of moving parts, but reducible to these

> use probability and statistical mechanics to analyse, e.g., temperature
of a gas, roll of a dice, ...

o organised complexity:

» smaller (maybe still large) number of relationships, that can't be
treated as independent

» non-random, but hard to predict

» ‘“complex” = small number of parts can generate “interesting”
behaviour

» analyse (typically) through simulation

Matthew Roughan (School of Mathematical ¢ September 18, 2013 7 /15

Complexity

o Why do | care:

» complex systems are harder to manage
» how can we make them simpler if we don't even understand what that
means

@ We're interested in strings (signals or messages) so lets talk about
them?

Matthew Roughan (School of Mathematical ¢ September 18, 2013 8 /15

Complexity examples

@ We're interested in strings (signals or messages) so lets talk about
them?
@ Which of these is complex?

© 101010101010101010101010101010101
© 110010010000111111011010101000100
© 101001010100001010101111010101010

Matthew Roughan (School of Mathematical ¢ September 18, 2013 9 /15

Complexity examples

@ We're interested in strings (signals or messages) so lets talk about
them?
@ Which of these is complex?
© 101010101010101010101010101010101
© 110010010000111111011010101000100
© 101001010100001010101111010101010
@ Answers:
@ repeat 10
© m in binary
© some random bits | typed

Matthew Roughan (School of Mathematical ¢ September 18, 2013 9 /15

Kolmogorov Complexity

@ The basic idea is that the complexity is the length of the shortest
description of the sequence

» ‘“description” could mean a program to generate it
> or it could just be “write the string 10101..."

@ Obviously this is still a little vague
» what programming language and computer?

Matthew Roughan (School of Mathematical ¢ September 18, 2013 10 / 15

Turing Machine

@ An abstract model of a computer

@ Turns out that all sufficiently complex computing systems are
equivalent in the sense that they can compute the same family of
functions:

» computable functions intuitively have a finite program, that completes
in a finite number of steps to the result

» almost all functions we deal with in math are computable (though
maybe not efficiently)

> there are a few that aren’t

@ Turing machines have a few variants, but simplest has

> a tape
» a finite state machine that can write/read from the tape

Matthew Roughan (School of Mathematical ¢ September 18, 2013 11 /15

Simple Turing Machine

@ a tape
> a tape is an idealisation of computer memory
» imagine a strip of paper on which we can write or erase some symbols
(often binary 1s and 0s)
» the tape can be moved back and forth so that the machine can write
and read any point on the tape
@ a finite state machine that can write/read from each tape

> n states, plus “halt”
» transition function has inputs of current state and current tape value
> transition causes three outputs:

* can write over the current bit of the tape
* it can move the tape
* the state machine’s state can change

@ running the machine means setting a set of tape values, and a
starting state, and then allowing transitions until “halt” is reached

Matthew Roughan (School of Mathematical ¢ September 18, 2013 12 /15

Our Turing Machine
@ Ours will be just a little different (but equivalent)

finite

input tape state output tape
[T [1 1 Ipapsfpofpl machine [Xlxadxalxd T T T T 1T 1 111

working tape
[TTTTTTTTTT foloJolifololifolofof T [T T 1T 111

@ Its helpful to separate inputs and outputs from working memory
» input tape (with the input p — the program — on it)
» output tape (which we will write the output x on)
» a working tape
» a finite state machine that can write/read from each tape

@ We'll call this a universal computer

Matthew Roughan (School of Mathematical ¢ September 18, 2013 13 /15

Formal Kolmogorov Complexity

Definition (Kolmogorov Complexity)

The Kolmogorov complexity Kis(x) of a string x with respect to a
universal computer U is defined as

Kuy(x) = min /(p)

= min
{pltt(p)=x}

So we are
e minising the length ¢(p) of the input p
@ such that the output U(p) = x
@ and then it halts

Matthew Roughan (School of Mathematical ¢ September 18, 2013 14 / 15

Further reading |

and Sons, 1991.

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley

Matthew Roughan (School of Mathematical ¢

	Complexity

