Information Theory and Networks

Lecture 20: Kolmogorov Complexity

Matthew Roughan
<matthew.roughan@adelaide.edu.au>
http://www.maths.adelaide.edu.au/matthew.roughan/
Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide

September 18, 2013

Part |

Kolmogorov Complexity

Clutter and confusion are failures of design, not attributes of
information.
Edward Tuft

Matthew Roughan (School of Mathematical § September 18, 2013

3/22

Matthew Roughan (School of Mathematical ¢

September 18, 2013

2/ 22

Information Theory

2013-09-18

http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/
http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/

Formal Kolmogorov Complexity

Information Theory

Formal Kolmogorov Complexity

plexity)
(x)

(x) of 2 string x with respect 10 3
defined a5

K=)

I—Formal Kolmogorov Complexity s

he length £(p) of the nput p
output U(p) = x

2013-09-18

Definition (Kolmogorov Complexity)

The Kolmogorov complexity Ki(x) of a string x with respect to a
universal computer U is defined as

Ku(x) {(p)

= min
{pltU(p)=x}

So we are
@ minimising the length ¢(p) of the input p
@ such that the output U(p) = x
@ and then it halts

Matthew Roughan (School of Mathematical § September 18, 2013 4 /22

Information Theory

Universality

L Universality

2013-09-18

Theorem

IfU is a universal computer, then for any other computer A
Remember that {0,1}* means all the finite strings of Os and 1s.

Ku(x) < Ka(x) + ca

for all strings x € {0, 1}*, where the constant c4 doesn't depend on x.

e this says that all universal computers are equivalent (from the point
of view of Kolmogorov complexity) up to a constant.
@ so the details don't matter (too) much
> the constant might be quite large

@ so we normally drop any mention of the actual machine in the
definition of complexity

Matthew Roughan (School of Mathematical § September 18, 2013 5/22

Information Theory

Universality -
(=)}

Proof. 03 I—Universality
o
N

Assume program p 4 for computer A prints x, i.e., A(p4) = x.

A U is a universal computer we can write a simulator for A in U/, call it s 4.

So the program s 4 p_4, input to U will simulate the output A(p.4), i.e.,
the desired output.

The length of this program is

U(sapa) ={(sa) + €(pa)
where {(s4) = c4 is constant with respect to x.

The Kolmogorov complexity is the minimum over such programs, and so it
becomes an inequality, because there might be a better way to generate
the same sequence.

DJ
Information Theory e
Examples 2
o 4 n toicn
3 I—Examples
i
o
N
@ An integer n (written in binary) has
Might be more expressive to write K(n) < 2[log, n| + ¢, but the extra
K(n) <2logyn+c bit can easily be moved to the constant.
To describe n, repeat every bit of the binary expansion of n twice: The commas in the example are just for clarity — they wouldn't be in the
then end the description with a 01. actual program.
Example: You can actually do a little better using iterated logs:
» n =25, which in binary is 101
» write as 11,00,11,01 log*n =logn+loglogn—+---
@ The first n digits of 7
. (see [CTI1, pp.148-149]).
» we know a program to generate digits
> we also need to let it know how many to generate
Matthew Roughan (School of Mathematical § September 18, 2013 7/22

Conditional Kolmogorov Complexity

Definition (Conditional Kolmogorov Complexity)

The Kolmogorov complexity Ki/(x) of a string x with respect to a universal
computer U, assuming the computer knows the length ¢(x) is defined as

K (x]4(x)) = min 14
) = o min o €P)

@ this is the shortest program given the computer knows the length of
the output

@ the subtlety is that if it knows ¢(x) then it knows when to stop,
without any extra computation

e we'll usually just write something like K(x|y)

Matthew Roughan (School of Mathematical § September 18, 2013 8 /22

Information Theory

Conditional Kolmogorov Complexity

Examples

e K(0000...0[¢) = c for all ¢
Print ¢ zeros
Similar for any simple repeated sequence.

o K(mmy...m|l) = c forall ¢
We know (short) constant length programs to output the digits of 7,
given we know how many to output.

o K(image|l) <{¢/3+c
Use standard compression algorithms, which can probably compress it
by about a factor of 3, without any loss.

@ A sequence with n bits and k ones?

Matthew Roughan (School of Mathematical § September 18, 2013 9 /22

©
b
o
o L - .
s Conditional Kolmogorov Complexity
—
< ot oty e e K(s)
Information Theory e
© o K000 = st
— e £ zeros
]
=)
Q L
& Examples
i
o
1o

Bounds 1

Theorem

K(x]€(x)) < £(x) + ¢

Proof.
Intuitively, we just write a program that says
Print the following ¢-bit sequence X1x2...Xy
No bits are needed for ¢ as that is given. Ol

September 18, 2013 10 / 22

Matthew Roughan (School of Mathematical ¢

Information Theory

Bounds 2

Theorem

K(x) < K(x[¢(x)) + 2log ¢(x) + ¢

Proof.

If the computer doesn't know #(x) it needs some way to know to halt, i.e.,
to know that it has reached the end of the sequence.

Suppose ¢(x) = n. To describe ¢(x), repeat every bit of the binary
expansion of n twice; then end the description with a 01 (as in earlier
example). So including the length in the program only takes 2log(n) + ¢
bits.

Then we just use the complexity given we know #(x). O

v

Matthew Roughan (School of Mathematical § September 18, 2013 11 /22

©
3 J
o
=)
g I—Bounds 1 ‘
— o
o
19
. Bounds 2

Information Theory
©
b
=)
=)
& I—Bounds 2
i
o
1o

Note we can't efficiently include x in the input, because this would take
£(x) bits, and defeat the whole point of trying to find a shorter program
to write x

You can actually do a little better using iterated logs:
log*n =logn+loglogn+ ---

(see [CTI1, pp.148-149]).

Bounds 3

Theorem
The number of strings with complexity K(x) < k satisfies

‘{xe 0,1} | K(x) < k}‘ < 2k

Proof.
List all of the (binary) programs i, and we get 2'.
Add up all the programs shorter than k and we get

k—1

Y 2i=2k-1<2k

i=0
Since each program can produce only one output sequence, the number of
sequences with complexity < k is < 2k, L]

v

Matthew Roughan (School of Mathematical ¢

September 18, 2013 12 /22

. Bounds 3
Information Theory i

Theorem

Theorem

L onHk/) < (M) < onH(K/n)
n+1 — \k/) —

Proof.
Stirling's approximation

n n
n! ~2mn (—)
e
Combinations

() = we=w

o

O

4

Matthew Roughan (School of Mathematical § September 18, 2013 13 /22

w The number of strings with complexity K(x) < k satisfies

\—Ii [{xe f0.1)" | K < k| <2*

o

o

s - Bounds 3

—

o

N ice, the ber of
g

Information Theory e g () <
o) Fs(
— Proof.
] Stirling's approximation

o &)

OI Gt

D () - i N

8 ~ Vrmen) (G2)

http://en.wikipedia.org/wiki/Stirling’s_approximation or see
Feller [Fel71, Chapter VII.2].

Note that although Stirling's approximation is an asymptotic formula, it's
pretty good even for moderate n, and it comes with bounds, so we could
do a tighter proof if needed using

n\" n\" e
2mn (f) < nl <+2mn (7)
e e/ V¢

http://en.wikipedia.org/wiki/Stirling's_approximation

Proof.
And

2nH(k/n) 2fk|og2(k/n)7(nfk) log,(1—k/n)

_ oklogy(n/k) o(n—k) loga(n/(n—k)
n k n n—k
N (Z) (n—k)

Also for k =1,...,n—1 the term , /m takes its minimum value for
k=n/2

2rk(n—k) Van = n+1

n 2 1
>
and maximum for k = 1, so

\/27rk(:— P \/27r(nn— St

Matthew Roughan (School of Mathematical ¢

O

September 18, 2013 14 / 22

y

Information Theory

Example

Can we compress a sequence of n bits with k ones?
@ earlier result was there is no universal compression, so we might guess
no
@ but the problem is subtlety different

Use the following program:

Generate, in lexicographic order,
all sequences with k ones;
0f these, print the ith

@ The program has fixed length
@ We need to specify

» k which has range 0,...,n
> i has conditional range ()

Matthew Roughan (School of Mathematical § September 18, 2013 15 / 22

3
o
o
o
S
Note for k = 0 or k = n cases we can't really use the formulae above.
Dealing with them as special cases we use
H(0)=H(1)=0
So the inequality is
L onHik/ny < (M) < onH(k/n)
n+1 —\k/) —
1 n
20 < < 20
n+1 - 0) -
L <1<2
n+1 — =
Information Theory
3
o
3 I—Example
i
&

Example

Use the following program:

Generate, in lexicographic order,
all sequences with k ones;
0f these, print the ith

The length of the above is
n
U(p) = c + 2logy(k) + log, <k>

@ The program has fixed length ¢p bits
@ We need to specify

» k which takes 2log,(k) + ¢ bits
> i which takes up to log, (}) + ¢ bits

* worst case is that i = (})

Matthew Roughan (School of Mathematical ¢

September 18, 2013 16 / 22

2013-09-18

Information Theory

09) = e+ 2lossh)+ g)

I—Example

 The program has fixed length c bits:
 We n

Example

Theorem
The Kolmogorov complexity of a binary string x with k ones is bounded by

k
K(xix2...xaln) < nH (—) +2logn+c
n

Proof.

Use the program from the last example, and note that k < n and (from

result above)
k
e (i) =74 (5)

Matthew Roughan (School of Mathematical § September 18, 2013 17 / 22

2013-09-18

Example

Information Theory

The Kolmogorow complexiy of 2 binary sting x with k ones is bounded by

(i< (£) 200

L Example =

Use the program from the last examle, and note that k < n and (from

vl abie) () <o (%)

D’

Information Theory

Incomputability = -
g

Theorem & I—Incomputability
—

The Kolmogorov complexity K(x) is not a computable function (i.e., no &

program with input x produces K(x) as output). :

Not computable doesn't mean “it's hard”, or “We don’t know how to
Proof. compute it", it means there are some values that can never be computed,
Imagine such a program exists. Now consider the function no matter how smart we are.

function GenerateComplexString(n);
input: Integer n.
output: A string s with complexity K(s) at least n.
for i =1 to co do
foreach string s of length exactly i do

if K(s) > n then
| return s

end
end
end

Matthew Roughan (School of Mathematical § September 18, 2013 18 /22
==

Information Theory

Incomputability

I—Incomputability

2013-09-18

Proof.
Comments about GenerateComplexString(n)
@ There is always at least one string with complexity > n, otherwise all
possible strings could be generated a program of length n.

@ So GenerateComplexString(n) always halts (and returns a string with
complexity at least n)

@ GenerateComplexString(n) has fixed length U, with input n (which
we can give with 2log, n bits).

Matthew Roughan (School of Mathematical § September 18, 2013 19 / 22

Incomputability

Proof.
Now define

function GeneratePardoxialString;
output: A string s with complexity K(s) at least no.
return GenerateComplexString(ng)

@ The length of GeneratePardoxialString is at most
U + 2logy(ng) + ¢
@ Since n grows faster than log, n, there must be a value ng such that
U + 2logy(ng) + ¢ < ng

But that means there is a function to generate s, whose length is less than
no, but the function GenerateComplexString(ng), created a string s whose

complexity was at least ng. Hence we have a contradiction. O

Information Theory

Berry Paradox

The smallest positive integer not definable in under eleven
words.

G.G.Berry (1867-1928)

Think about it:

@ There are a finite number of words, and hence finite number of
sentences with less than eleven words.

@ Hence a finite number of positive integers describable, and hence an
infinite number that aren't.

o By well ordering property of integers, there is therefore a least such
integer.

@ But the above description is 10 words, and hence, it is defined with
under 11 words.

@ Thus it no longer is described by the words, so it isn't ...
This leads to Chaitin, Godel and Escher

Matthew Roughan (School of Mathematical § September 18, 2013 21 /22

©
by
o
o L -
s Incomputability
—
o
19
. Berry Paradox
I nform atlon Theory WYhe smallest positive integer not definable in under eleven

= [—

L]
=)
S L
s Berry Paradox
i
o
1o

ibed by the words, s it 't

“This leads to Chaitin, Gadel and Escher

Further reading |

ﬁ Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

@ William Feller, An introduction to probability theory and its applications, second
ed., vol. |, John Wiley and Sons, New York, 1971.

Matthew Roughan (School of Mathematical § September 18, 2013 22 /22

	Kolmogorov Complexity

