Information Theory and Networks
Lecture 20：Kolmogorov Complexity

Matthew Roughan
＜matthew．roughan＠adelaide．edu．au＞
http：／／www．maths．adelaide．edu．au／matthew．roughan／ Lecture＿notes／InformationTheory／

School of Mathematical Sciences，
University of Adelaide

September 18， 2013
\square

Part I

Kolmogorov Complexity

```
    Information Theory
\square
#
```


Formal Kolmogorov Complexity

Definition (Kolmogorov Complexity)

The Kolmogorov complexity $K_{\mathcal{U}}(\mathbf{x})$ of a string x with respect to a universal computer \mathcal{U} is defined as

$$
K_{\mathcal{U}}(\mathbf{x})=\min _{\{\mathbf{p} \mid \mathcal{U})=\mathbf{x}\}} \ell(\mathbf{p})
$$

So we are

- minimising the length $\ell(\mathbf{p})$ of the input \mathbf{p}
- such that the output $\mathcal{U}(\mathbf{p})=\mathbf{x}$
- and then it halts

Universality

Theorem

If \mathcal{U} is a universal computer, then for any other computer \mathcal{A}

$$
K_{\mathcal{U}}(\mathbf{x}) \leq K_{\mathcal{A}}(\mathbf{x})+c_{\mathcal{A}}
$$

for all strings $\mathbf{x} \in\{0,1\}^{*}$, where the constant $c_{\mathcal{A}}$ doesn't depend on \mathbf{x}.

- this says that all universal computers are equivalent (from the point of view of Kolmogorov complexity) up to a constant.
- so the details don't matter (too) much
- the constant might be quite large
- so we normally drop any mention of the actual machine in the definition of complexity

```
Information Theory
LFormal Kolmogorov Complexity

\section*{Information Theory \\ 2013-09-18}


Remember that \(\{0,1\}^{*}\) means all the finite strings of 0 s and 1 s .

\section*{Universality}

\section*{Proof.}

Assume program \(\mathbf{p}_{\mathcal{A}}\) for computer \(\mathcal{A}\) prints \(\mathbf{x}\), i.e., \(\mathcal{A}\left(\mathbf{p}_{\mathcal{A}}\right)=\mathbf{x}\).
A \(\mathcal{U}\) is a universal computer we can write a simulator for \(\mathcal{A}\) in \(\mathcal{U}\), call it \(\mathbf{s}_{\mathcal{A}}\).
So the program \(\mathbf{s}_{\mathcal{A}} \mathbf{p}_{\mathcal{A}}\), input to \(\mathcal{U}\) will simulate the output \(\mathcal{A}\left(\mathbf{p}_{\mathcal{A}}\right)\), i.e., the desired output.

The length of this program is
\[
\ell\left(\mathbf{s}_{\mathcal{A}} \mathbf{p}_{\mathcal{A}}\right)=\ell\left(\mathbf{s}_{\mathcal{A}}\right)+\ell\left(\mathbf{p}_{\mathcal{A}}\right)
\]
where \(\ell\left(\mathbf{s}_{\mathcal{A}}\right)=c_{\mathcal{A}}\) is constant with respect to \(\mathbf{x}\).
The Kolmogorov complexity is the minimum over such programs, and so it becomes an inequality, because there might be a better way to generate the same sequence.

\section*{\(\begin{array}{ll} & \text { Information Theory } \\ 0 & \\ 0 & \text { Examples }\end{array}\)}

Might be more expressive to write \(K(n) \leq 2\left\lceil\log _{2} n\right\rceil+c\), but the extra bit can easily be moved to the constant.

The commas in the example are just for clarity - they wouldn't be in the actual program.

You can actually do a little better using iterated logs:
\[
\log ^{*} n=\log n+\log \log n+\cdots
\]
(see [CT91, pp.148-149]).

\section*{Conditional Kolmogorov Complexity}
```

Information Theory
$\complement_{\text {Conditional Kolmogorov Complexity }}$

```

\section*{Definition (Conditional Kolmogorov Complexity)}

The Kolmogorov complexity \(K_{\mathcal{U}}(\mathbf{x})\) of a string \(\mathbf{x}\) with respect to a universal computer \(\mathcal{U}\), assuming the computer knows the length \(\ell(\mathbf{x})\) is defined as
\[
K_{\mathcal{U}}(\mathbf{x} \mid \ell(\mathbf{x}))=\min _{\{\mathbf{p} \mid \mathcal{U}(\mathbf{p}, \ell(\mathbf{x}))=\mathbf{x}\}} \ell(\mathbf{p})
\]
- this is the shortest program given the computer knows the length of the output
- the subtlety is that if it knows \(\ell(\mathbf{x})\) then it knows when to stop, without any extra computation
- we'll usually just write something like \(K(\mathbf{x} \mid y)\)

\section*{Examples}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Information Theory \\
2013-09-18 \\
-Examples
\end{tabular} &  \\
\hline & \\
\hline
\end{tabular}
- \(K(0000 \ldots 0 \mid \ell)=c\) for all \(\ell\)

Print \(\ell\) zeros
Similar for any simple repeated sequence.
- \(K\left(\pi_{1} \pi_{2} \ldots \pi_{\ell} \mid \ell\right)=c\) for all \(\ell\)

We know (short) constant length programs to output the digits of \(\pi\), given we know how many to output.
- \(K(\) image \(\mid \ell) \leq \ell / 3+c\)

Use standard compression algorithms, which can probably compress it by about a factor of 3 , without any loss.
- A sequence with \(n\) bits and \(k\) ones?

\section*{Theorem}
\[
K(\mathbf{x} \mid \ell(\mathbf{x})) \leq \ell(\mathbf{x})+c
\]

\section*{Proof.}
Intuitively, we just write a program that says
Print the following \(\ell\)-bit sequence \(x_{1} x_{2} \ldots x_{\ell}\)
No bits are needed for \(\ell\) as that is given.


\section*{Bounds 2}

\section*{Theorem}
\[
K(\mathbf{x}) \leq K(\mathbf{x} \mid \ell(\mathbf{x}))+2 \log \ell(\mathbf{x})+c
\]

\section*{Proof.}

If the computer doesn't know \(\ell(\mathbf{x})\) it needs some way to know to halt, i.e., to know that it has reached the end of the sequence.

Suppose \(\ell(\mathbf{x})=n\). To describe \(\ell(\mathbf{x})\), repeat every bit of the binary expansion of \(n\) twice; then end the description with a 01 (as in earlier example). So including the length in the program only takes \(2 \log (n)+c\) bits.

Then we just use the complexity given we know \(\ell(\mathbf{x})\).


Note we can't efficiently include \(\mathbf{x}\) in the input, because this would take \(\ell(\mathbf{x})\) bits, and defeat the whole point of trying to find a shorter program to write \(\mathbf{x}\)

You can actually do a little better using iterated logs:
\[
\log ^{*} n=\log n+\log \log n+\cdots
\]
(see [CT91, pp.148-149]).

\section*{Bounds 3}

\section*{Theorem}

The number of strings with complexity \(K(\mathbf{x})<k\) satisfies
\[
\left|\left\{\mathbf{x} \in\{0,1\}^{*} \mid K(\mathbf{x})<k\right\}\right|<2^{k}
\]

\section*{Proof.}

List all of the (binary) programs \(i\), and we get \(2^{i}\).
Add up all the programs shorter than \(k\) and we get
\[
\sum_{i=0}^{k-1} 2^{i}=2^{k}-1<2^{k}
\]

Since each program can produce only one output sequence, the number of sequences with complexity \(<k\) is \(<2^{k}\).


\section*{Theorem}
\[
\frac{1}{n+1} 2^{n H(k / n)} \leq\binom{ n}{k} \leq 2^{n H(k / n)}
\]

\section*{Proof.}

\section*{Stirling's approximation}
\[
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
\]

\section*{Combinations}
\[
\begin{aligned}
\binom{n}{k} & =\frac{n!}{k!(n-k)!} \\
& \sim \sqrt{\frac{n}{2 \pi k(n-k)}}\left(\frac{n}{k}\right)^{k}\left(\frac{n}{n-k}\right)^{n-k}
\end{aligned}
\]
```

Information Theory

http://en.wikipedia.org/wiki/Stirling's_approximation or see Feller [Fel71, Chapter VII.2].
Note that although Stirling's approximation is an asymptotic formula, it's pretty good even for moderate n, and it comes with bounds, so we could do a tighter proof if needed using

$$
\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \leq n!\leq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \frac{e}{\sqrt{2 \pi}}
$$

Proof

And

$$
\begin{aligned}
2^{n H(k / n)} & =2^{-k \log _{2}(k / n)-(n-k) \log _{2}(1-k / n)} \\
& =2^{k \log _{2}(n / k)} 2^{(n-k) \log _{2}(n /(n-k))} \\
& =\left(\frac{n}{k}\right)^{k}\left(\frac{n}{n-k}\right)^{n-k}
\end{aligned}
$$

Also for $k=1, \ldots, n-1$ the term $\sqrt{\frac{n}{2 \pi k(n-k)}}$ takes its minimum value for

Note for $k=0$ or $k=n$ cases we can't really use the formulae above. Dealing with them as special cases we use

$$
H(0)=H(1)=0
$$

So the inequality is

$$
\begin{aligned}
\frac{1}{n+1} 2^{n H(k / n)} & \leq\binom{ n}{k} \leq 2^{n H(k / n)} \\
\frac{1}{n+1} 2^{0} & \leq\binom{ n}{0} \leq 2^{0} \\
\frac{1}{n+1} & \leq 1 \leq 2
\end{aligned}
$$

$k=n / 2$

$$
\sqrt{\frac{n}{2 \pi k(n-k)}}=\sqrt{\frac{2}{\pi n}} \geq \frac{1}{n+1}
$$

and maximum for $k=1$, so

$$
\sqrt{\frac{n}{2 \pi k(n-k)}}=\sqrt{\frac{n}{2 \pi(n-1)}} \leq 1
$$

Example

Can we compress a sequence of n bits with k ones?

- earlier result was there is no universal compression, so we might guess no
- but the problem is subtlety different

Use the following program:

> Generate, in lexicographic order, all sequences with k ones;
> Of these, print the ith

- The program has fixed length
- We need to specify
- k which has range $0, \ldots, n$
- i has conditional range $\binom{n}{k}$

Example

Use the following program:

> Generate, in lexicographic order, all sequences with k ones;
> Of these, print the ith

The length of the above is

$$
\ell(p)=c+2 \log _{2}(k)+\log _{2}\binom{n}{k}
$$

- The program has fixed length c_{0} bits
- We need to specify
- k which takes $2 \log _{2}(k)+c_{1}$ bits
- i which takes up to $\log _{2}\binom{n}{k}+c_{2}$ bits
* worst case is that $i=\binom{n}{k}$

```
Information Theory

\section*{Example}


\section*{Theorem}

The Kolmogorov complexity of a binary string \(\mathbf{x}\) with \(k\) ones is bounded by
\[
K\left(x_{1} x_{2} \ldots x_{n} \mid n\right) \leq n H\left(\frac{k}{n}\right)+2 \log n+c
\]

\section*{Proof.}

Use the program from the last example, and note that \(k \leq n\) and (from result above)
\[
\log _{2}\binom{n}{k} \leq n H\left(\frac{k}{n}\right)
\]

\section*{Incomputability}

\section*{Theorem}

The Kolmogorov complexity \(K(\mathbf{x})\) is not a computable function (i.e., no program with input \(\mathbf{x}\) produces \(K(\mathbf{x})\) as output).

\section*{Proof.}

Imagine such a program exists. Now consider the function
```

function GenerateComplexString (n);
input: Integer n.
output: A string s with complexity $K(s)$ at least n.
for $i=1$ to ∞ do
foreach string s of length exactly i do
if $K(s) \geq n$ then
return s
end
end
end

```
atthew Roughan (School of Mathematical : Information Theory September 18, 2013 \(18 / 22\)

\section*{Incomputability}

\section*{Proof.}

Comments about GenerateComplexString ( \(n\) )
- There is always at least one string with complexity \(\geq n\), otherwise all possible strings could be generated a program of length \(n\).
- So GenerateComplexString( \(n\) ) always halts (and returns a string with complexity at least \(n\) )
- GenerateComplexString \((n)\) has fixed length \(U\), with input \(n\) (which we can give with \(2 \log _{2} n\) bits).

\section*{Incomputability}

\section*{Proof}

Now define
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Information Theory} \\
\hline \(\stackrel{\infty}{\square}\) & \\
\hline \[
\begin{aligned}
& \text { ò } \\
& \text { o } \\
& \underset{\sim}{2} \\
& \text { in }
\end{aligned}
\] & - Incomputability \\
\hline
\end{tabular}
function GeneratePardoxialString;
output: A string \(s\) with complexity \(K(s)\) at least \(n_{0}\).
return GenerateComplexString \(\left(n_{0}\right)\)
- The length of GeneratePardoxialString is at most
\[
U+2 \log _{2}\left(n_{0}\right)+c
\]
- Since \(n\) grows faster than \(\log _{2} n\), there must be a value \(n_{0}\) such that
\[
U+2 \log _{2}\left(n_{0}\right)+c<n_{0}
\]

But that means there is a function to generate \(s\), whose length is less than \(n_{0}\), but the function GenerateComplexString \(\left(n_{0}\right)\), created a string \(s\) whose complexity was at least \(n_{0}\). Hence we have a contradiction

\section*{Berry Paradox}

The smallest positive integer not definable in under eleven words.
G. G.Berry (1867-1928)

\section*{Think about it:}
- There are a finite number of words, and hence finite number of sentences with less than eleven words.
- Hence a finite number of positive integers describable, and hence an infinite number that aren't.
- By well ordering property of integers, there is therefore a least such integer.
- But the above description is 10 words, and hence, it is defined with under 11 words.
- Thus it no longer is described by the words, so it isn't ...

This leads to Chaitin, Gödel and Escher

Further reading I
(Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley and Sons, 1991.
(Rilliam Feller, An introduction to probability theory and its applications, second ed., vol. I, John Wiley and Sons, New York, 1971.
```

