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Formal Kolmogorov Complexity

Definition (Kolmogorov Complexity)

The Kolmogorov complexity KU (x) of a string x with respect to a
universal computer U is defined as

KU (x) = min
{p|U(p)=x}

`(p)

So we are

minimising the length `(p) of the input p

such that the output U(p) = x

and then it halts
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Formal Kolmogorov Complexity

Universality

Theorem

If U is a universal computer, then for any other computer A

KU (x) ≤ KA(x) + cA

for all strings x ∈ {0, 1}∗, where the constant cA doesn’t depend on x.

this says that all universal computers are equivalent (from the point
of view of Kolmogorov complexity) up to a constant.

so the details don’t matter (too) much
I the constant might be quite large

so we normally drop any mention of the actual machine in the
definition of complexity
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Universality

Remember that {0, 1}∗ means all the finite strings of 0s and 1s.



Universality

Proof.

Assume program pA for computer A prints x, i.e., A(pA) = x.

A U is a universal computer we can write a simulator for A in U , call it sA.

So the program sA pA, input to U will simulate the output A(pA), i.e.,
the desired output.

The length of this program is

`(sA pA) = `(sA) + `(pA)

where `(sA) = cA is constant with respect to x.

The Kolmogorov complexity is the minimum over such programs, and so it
becomes an inequality, because there might be a better way to generate
the same sequence.
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Universality

Examples

An integer n (written in binary) has

K (n) ≤ 2 log2 n + c

To describe n, repeat every bit of the binary expansion of n twice;
then end the description with a 01.
Example:

I n = 5, which in binary is 101
I write as 11, 00, 11, 01

The first n digits of π
I we know a program to generate digits
I we also need to let it know how many to generate
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Might be more expressive to write K (n) ≤ 2dlog2 ne+ c , but the extra
bit can easily be moved to the constant.

The commas in the example are just for clarity – they wouldn’t be in the
actual program.

You can actually do a little better using iterated logs:

log∗n = log n + log log n + · · ·

(see [CT91, pp.148-149]).



Conditional Kolmogorov Complexity

Definition (Conditional Kolmogorov Complexity)

The Kolmogorov complexity KU (x) of a string x with respect to a universal
computer U , assuming the computer knows the length `(x) is defined as

KU (x|`(x)) = min
{p|U(p,`(x))=x}

`(p)

this is the shortest program given the computer knows the length of
the output

the subtlety is that if it knows `(x) then it knows when to stop,
without any extra computation

we’ll usually just write something like K (x|y)
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Conditional Kolmogorov Complexity

Examples

K (0000 . . . 0|`) = c for all `
Print ` zeros
Similar for any simple repeated sequence.

K (π1π2 . . . π`|`) = c for all `
We know (short) constant length programs to output the digits of π,
given we know how many to output.

K (image|`) ≤ `/3 + c
Use standard compression algorithms, which can probably compress it
by about a factor of 3, without any loss.

A sequence with n bits and k ones?
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Bounds 1

Theorem

K (x|`(x)) ≤ `(x) + c

Proof.

Intuitively, we just write a program that says
Print the following `-bit sequence x1x2 . . . x`

No bits are needed for ` as that is given.
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Bounds 2

Theorem

K (x) ≤ K (x|`(x)) + 2 log `(x) + c

Proof.

If the computer doesn’t know `(x) it needs some way to know to halt, i.e.,
to know that it has reached the end of the sequence.

Suppose `(x) = n. To describe `(x), repeat every bit of the binary
expansion of n twice; then end the description with a 01 (as in earlier
example). So including the length in the program only takes 2 log(n) + c
bits.

Then we just use the complexity given we know `(x).
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Bounds 2

Note we can’t efficiently include x in the input, because this would take
`(x) bits, and defeat the whole point of trying to find a shorter program
to write x

You can actually do a little better using iterated logs:

log∗n = log n + log log n + · · ·

(see [CT91, pp.148-149]).



Bounds 3

Theorem

The number of strings with complexity K (x) < k satisfies∣∣∣{x ∈ {0, 1}∗ | K (x) < k
}∣∣∣ < 2k

Proof.

List all of the (binary) programs i , and we get 2i .

Add up all the programs shorter than k and we get

k−1∑
i=0

2i = 2k − 1 < 2k

Since each program can produce only one output sequence, the number of
sequences with complexity < k is < 2k .
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Bounds 3

Theorem

1
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(
n

k

)
≤ 2nH(k/n)

Proof.
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http://en.wikipedia.org/wiki/Stirling’s_approximation or see
Feller [Fel71, Chapter VII.2].

Note that although Stirling’s approximation is an asymptotic formula, it’s
pretty good even for moderate n, and it comes with bounds, so we could
do a tighter proof if needed using

√
2πn

(n

e

)n
≤ n! ≤

√
2πn

(n

e

)n e√
2π

http://en.wikipedia.org/wiki/Stirling's_approximation


Proof.

And

2nH(k/n) = 2−k log2(k/n)−(n−k) log2(1−k/n)

= 2k log2(n/k) 2(n−k) log2(n/(n−k))

=
(n

k

)k ( n

n − k

)n−k

Also for k = 1, . . . , n − 1 the term
√

n
2πk(n−k) takes its minimum value for

k = n/2 √
n

2πk(n − k)
=

√
2

πn
≥ 1

n + 1

and maximum for k = 1, so√
n

2πk(n − k)
=

√
n

2π(n − 1)
≤ 1
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Note for k = 0 or k = n cases we can’t really use the formulae above.
Dealing with them as special cases we use

H(0) = H(1) = 0

So the inequality is

1

n + 1
2nH(k/n) ≤

(
n

k

)
≤ 2nH(k/n)

1

n + 1
20 ≤

(
n

0

)
≤ 20

1

n + 1
≤ 1 ≤ 2

Example

Can we compress a sequence of n bits with k ones?

earlier result was there is no universal compression, so we might guess
no

but the problem is subtlety different

Use the following program:

Generate, in lexicographic order,

all sequences with k ones;

Of these, print the ith

The program has fixed length

We need to specify
I k which has range 0, . . . , n
I i has conditional range

(
n
k

)
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Example

Use the following program:

Generate, in lexicographic order,

all sequences with k ones;

Of these, print the ith

The length of the above is

`(p) = c + 2 log2(k) + log2

(
n

k

)

The program has fixed length c0 bits

We need to specify
I k which takes 2 log2(k) + c1 bits
I i which takes up to log2

(
n
k

)
+ c2 bits

F worst case is that i =
(
n
k

)
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Theorem

The Kolmogorov complexity of a binary string x with k ones is bounded by

K (x1x2 . . . xn|n) ≤ nH

(
k

n

)
+ 2 log n + c

Proof.

Use the program from the last example, and note that k ≤ n and (from
result above)

log2
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≤ nH

(
k

n

)
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Incomputability

Theorem

The Kolmogorov complexity K (x) is not a computable function (i.e., no
program with input x produces K (x) as output).

Proof.

Imagine such a program exists. Now consider the function

function GenerateComplexString(n);
input: Integer n.
output: A string s with complexity K (s) at least n.
for i = 1 to ∞ do

foreach string s of length exactly i do
if K (s) ≥ n then

return s
end

end

end
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Incomputability

Not computable doesn’t mean “it’s hard”, or “We don’t know how to

compute it”, it means there are some values that can never be computed,

no matter how smart we are.

Incomputability

Proof.

Comments about GenerateComplexString(n)

There is always at least one string with complexity ≥ n, otherwise all
possible strings could be generated a program of length n.

So GenerateComplexString(n) always halts (and returns a string with
complexity at least n)

GenerateComplexString(n) has fixed length U, with input n (which
we can give with 2 log2 n bits).
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Incomputability

Proof.

Now define

function GeneratePardoxialString;
output: A string s with complexity K (s) at least n0.
return GenerateComplexString(n0)

The length of GeneratePardoxialString is at most

U + 2 log2(n0) + c

Since n grows faster than log2 n, there must be a value n0 such that

U + 2 log2(n0) + c < n0

But that means there is a function to generate s, whose length is less than
n0, but the function GenerateComplexString(n0), created a string s whose
complexity was at least n0. Hence we have a contradiction.
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Berry Paradox

The smallest positive integer not definable in under eleven
words.

G.G.Berry (1867-1928)

Think about it:

There are a finite number of words, and hence finite number of
sentences with less than eleven words.

Hence a finite number of positive integers describable, and hence an
infinite number that aren’t.

By well ordering property of integers, there is therefore a least such
integer.

But the above description is 10 words, and hence, it is defined with
under 11 words.

Thus it no longer is described by the words, so it isn’t ...

This leads to Chaitin, Gödel and Escher
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

William Feller, An introduction to probability theory and its applications, second
ed., vol. I, John Wiley and Sons, New York, 1971.
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