Information Theory and Networks

Lecture 20: Kolmogorov Complexity

Matthew Roughan

<matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/

Lecture_notes/InformationTheory/

School of Mathematical Sciences, University of Adelaide

September 18, 2013

Part I

Kolmogorov Complexity

Clutter and confusion are failures of design, not attributes of information.

Edward Tuft

Formal Kolmogorov Complexity

Definition (Kolmogorov Complexity)

The Kolmogorov complexity $K_{\mathcal{U}}(\mathbf{x})$ of a string \mathbf{x} with respect to a universal computer \mathcal{U} is defined as

$$\mathcal{K}_{\mathcal{U}}(\mathbf{x}) = \min_{\{\mathbf{p}|\mathcal{U}(\mathbf{p})=\mathbf{x}\}} \ell(\mathbf{p})$$

So we are

- minimising the length $\ell(\mathbf{p})$ of the input \mathbf{p}
- such that the output $\mathcal{U}(\mathbf{p}) = \mathbf{x}$
- and then it halts

Universality

Theorem

If ${\mathcal U}$ is a universal computer, then for any other computer ${\mathcal A}$

$$K_{\mathcal{U}}(\mathbf{x}) \leq K_{\mathcal{A}}(\mathbf{x}) + c_{\mathcal{A}}$$

for all strings $\mathbf{x} \in \{0,1\}^*$, where the constant $c_{\mathcal{A}}$ doesn't depend on \mathbf{x} .

- this says that all universal computers are equivalent (from the point of view of Kolmogorov complexity) up to a constant.
- so the details don't matter (too) much
 - the constant might be quite large
- so we normally drop any mention of the actual machine in the definition of complexity

Universality

Proof.

Assume program $\mathbf{p}_{\mathcal{A}}$ for computer \mathcal{A} prints \mathbf{x} , i.e., $\mathcal{A}(\mathbf{p}_{\mathcal{A}}) = \mathbf{x}$.

A $\mathcal U$ is a universal computer we can write a simulator for $\mathcal A$ in $\mathcal U$, call it $\mathbf s_{\mathcal A}$.

So the program $\mathbf{s}_{\mathcal{A}} \mathbf{p}_{\mathcal{A}}$, input to \mathcal{U} will simulate the output $\mathcal{A}(\mathbf{p}_{\mathcal{A}})$, i.e., the desired output.

The length of this program is

$$\ell(\mathsf{s}_\mathcal{A}\,\mathsf{p}_\mathcal{A}) = \ell(\mathsf{s}_\mathcal{A}) + \ell(\mathsf{p}_\mathcal{A})$$

where $\ell(\mathbf{s}_{\mathcal{A}}) = c_{\mathcal{A}}$ is constant with respect to \mathbf{x} .

The Kolmogorov complexity is the minimum over such programs, and so it becomes an inequality, because there might be a better way to generate the same sequence.

Examples

• An integer *n* (written in binary) has

$$K(n) \leq 2\log_2 n + c$$

To describe n, repeat every bit of the binary expansion of n twice; then end the description with a 01.

Example:

- ightharpoonup n = 5, which in binary is 101
- write as 11,00,11,01
- The first n digits of π
 - we know a program to generate digits
 - we also need to let it know how many to generate

Conditional Kolmogorov Complexity

Definition (Conditional Kolmogorov Complexity)

The Kolmogorov complexity $K_{\mathcal{U}}(\mathbf{x})$ of a string \mathbf{x} with respect to a universal computer \mathcal{U} , assuming the computer knows the length $\ell(\mathbf{x})$ is defined as

$$\textit{K}_{\mathcal{U}}(\textbf{x}|\ell(\textbf{x})) = \min_{\{\textbf{p}|\mathcal{U}(\textbf{p},\ell(\textbf{x})) = \textbf{x}\}} \ell(\textbf{p})$$

- this is the shortest program given the computer knows the length of the output
- the subtlety is that if it knows $\ell(\mathbf{x})$ then it knows when to stop, without any extra computation
- we'll usually just write something like $K(\mathbf{x}|y)$

Examples

- $K(0000...0|\ell) = c$ for all ℓ Print ℓ zeros Similar for any simple repeated sequence.
- $K(\pi_1\pi_2...\pi_\ell|\ell)=c$ for all ℓ We know (short) constant length programs to output the digits of π , given we know how many to output.
- $K(image|\ell) \le \ell/3 + c$ Use standard compression algorithms, which can probably compress it by about a factor of 3, without any loss.
- A sequence with n bits and k ones?

Bounds 1

Theorem

$$K(\mathbf{x}|\ell(\mathbf{x})) \leq \ell(\mathbf{x}) + c$$

Proof.

Intuitively, we just write a program that says

Print the following ℓ -bit sequence $x_1x_2...x_\ell$

No bits are needed for ℓ as that is given.

Bounds 2

Theorem

$$K(\mathbf{x}) \le K(\mathbf{x}|\ell(\mathbf{x})) + 2\log\ell(\mathbf{x}) + c$$

Proof.

If the computer doesn't know $\ell(\mathbf{x})$ it needs some way to know to halt, i.e., to know that it has reached the end of the sequence.

Suppose $\ell(\mathbf{x}) = n$. To describe $\ell(\mathbf{x})$, repeat every bit of the binary expansion of n twice; then end the description with a 01 (as in earlier example). So including the length in the program only takes $2\log(n) + c$ bits.

Then we just use the complexity given we know $\ell(\mathbf{x})$.

Bounds 3

Theorem

The number of strings with complexity $K(\mathbf{x}) < k$ satisfies

$$\left|\left\{\mathbf{x} \in \{0,1\}^* \mid K(\mathbf{x}) < k\right\}\right| < 2^k$$

Proof.

List all of the (binary) programs i, and we get 2^{i} .

Add up all the programs shorter than k and we get

$$\sum_{i=0}^{k-1} 2^i = 2^k - 1 < 2^k$$

Since each program can produce only one output sequence, the number of sequences with complexity < k is $< 2^k$.

Theorem

$$\frac{1}{n+1}2^{nH(k/n)} \le \binom{n}{k} \le 2^{nH(k/n)}$$

Proof.

Stirling's approximation

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Combinations

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\sim \sqrt{\frac{n}{2\pi k(n-k)}} \left(\frac{n}{k}\right)^k \left(\frac{n}{n-k}\right)^{n-k}$$

Proof.

And

$$2^{nH(k/n)} = 2^{-k \log_2(k/n) - (n-k) \log_2(1-k/n)}$$

$$= 2^{k \log_2(n/k)} 2^{(n-k) \log_2(n/(n-k))}$$

$$= \left(\frac{n}{k}\right)^k \left(\frac{n}{n-k}\right)^{n-k}$$

Also for $k=1,\ldots,n-1$ the term $\sqrt{\frac{n}{2\pi k(n-k)}}$ takes its minimum value for k=n/2

$$\sqrt{\frac{n}{2\pi k(n-k)}} = \sqrt{\frac{2}{\pi n}} \ge \frac{1}{n+1}$$

and maximum for k = 1, so

$$\sqrt{\frac{n}{2\pi k(n-k)}} = \sqrt{\frac{n}{2\pi(n-1)}} \le 1$$

Example

Can we compress a sequence of n bits with k ones?

- earlier result was there is no universal compression, so we might guess no
- but the problem is subtlety different

Use the following program:

- The program has fixed length
- We need to specify
 - k which has range $0, \ldots, n$
 - ightharpoonup i has conditional range $\binom{n}{k}$

Example

Use the following program:

The length of the above is

$$\ell(p) = c + 2\log_2(k) + \log_2\binom{n}{k}$$

- The program has fixed length c_0 bits
- We need to specify
 - k which takes $2\log_2(k) + c_1$ bits
 - *i* which takes up to $\log_2 \binom{n}{k} + c_2$ bits
 - ***** worst case is that $i = \binom{n}{k}$

Example

Theorem

The Kolmogorov complexity of a binary string x with k ones is bounded by

$$K(x_1x_2...x_n|n) \le nH\left(\frac{k}{n}\right) + 2\log n + c$$

Proof.

Use the program from the last example, and note that $k \leq n$ and (from result above)

$$\log_2\binom{n}{k} \le nH\left(\frac{k}{n}\right)$$

Incomputability

Theorem

The Kolmogorov complexity $K(\mathbf{x})$ is not a computable function (i.e., no program with input \mathbf{x} produces $K(\mathbf{x})$ as output).

Proof.

Imagine such a program exists. Now consider the function

```
function GenerateComplexString(n);
input: Integer n.
output: A string s with complexity K(s) at least n.
for i=1 to \infty do

| foreach string s of length exactly i do

| if K(s) \ge n then
| return s
| end
| end
| end
```

Incomputability

Proof.

Comments about GenerateComplexString(n)

- There is always at least one string with complexity $\geq n$, otherwise all possible strings could be generated a program of length n.
- So GenerateComplexString(n) always halts (and returns a string with complexity at least n)
- GenerateComplexString(n) has fixed length U, with input n (which we can give with $2 \log_2 n$ bits).

Incomputability

Proof.

Now define

function GeneratePardoxialString; **output**: A string s with complexity K(s) at least n_0 . **return** GenerateComplexString (n_0)

The length of GeneratePardoxialString is at most

$$U+2\log_2(n_0)+c$$

• Since n grows faster than $\log_2 n$, there must be a value n_0 such that

$$U + 2\log_2(n_0) + c < n_0$$

But that means there is a function to generate s, whose length is less than n_0 , but the function GenerateComplexString(n_0), created a string s whose complexity was at least n_0 . Hence we have a contradiction.

Berry Paradox

The smallest positive integer not definable in under eleven words.

G.G.Berry (1867-1928)

Think about it:

- There are a finite number of words, and hence finite number of sentences with less than eleven words.
- Hence a finite number of positive integers describable, and hence an infinite number that aren't.
- By well ordering property of integers, there is therefore a least such integer.
- But the above description is 10 words, and hence, it is defined with under 11 words.
- Thus it no longer is described by the words, so it isn't ...

This leads to Chaitin, Gödel and Escher

Further reading I

Thomas M. Cover and Joy A. Thomas, *Elements of information theory*, John Wiley and Sons, 1991.

William Feller, *An introduction to probability theory and its applications*, second ed., vol. I, John Wiley and Sons, New York, 1971.