Information Theory and Networks Lecture 21: Kolmogorov Complexity and Probability

Matthew Roughan <matthew.roughan@adelaide.edu.au> http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > September 18, 2013

(ロ) (四) (三) (三) (三)

September 18, 2013

3 / 19

Hence it is that we take Delight in a Prospect which is well laid out, and diversified with Fields and Meadows, Woods and Rivers; in those accidental Landskips of Trees, Clouds and Cities, that are sometimes found in the Veins of Marble; in the curious Fret-work of Rocks and Grottos; and, in a Word, in any thing that hath such a Variety or Regularity as may seem the Effect of Design, in what we call the Works of Chance.

Joseph Addison

Information Theory 81- 60- 8102	Notes it is their own fade Dophysic as 7 Property obch is used ind mit, and downfad solid Tophysic and Massaw, Wouch and Elsev, the two annotations and the Would Alada, and Clints, that are uncontained and the Would Alada, Work, is any thing that hash would -Workey or Deputy as my sum the Elfics of Deputy, is what we call the Work of Clants. Alacet Alada

 $\sum_{l \neq l \to l + 2} 2^{-l(p)} \le 1$

So halting programs are prefix free Hence lengths satisfy Kraft inequality (see earlier

Kolmogorov Complexity and Randomness

What is "random" when we are talking about a single sequence?

- more precisely, given a single sequence, could we argue it was random or not?
- we don't *a priori* know a model
- we don't have an ensemble to look at

We care because we are all the time generating pseudo-random sequences. Then we use them in things like cryptography which need really random numbers.

Information Theory

<ロ> <団> <団> <目> <目> <日> <日> <日</p>

September 18, 2013

8 / 19

Information Theory Kolmogorov Complexity and Entropy	Nada Hada Hada Hada Hada Nadar Marking barden barden barden A ander man night be record to re-exaction bis faith, if for A ander man night be record to re-exaction bis faith, if for Hada Hada Hada Hadar Hada Hada Hada Hada Hada Hada Hada Hada

latthew Roughan (School of Mathematical

Kolmogorov Complexity and Randomness

What is "random"?

Aatthew Roughan (School of Mathematical

Theorem

Let $\{X_i\}$ be drawn from a fair Bernoulli process, i.e., with p = 1/2, then

 $P(K(X_1, X_2, \ldots, X_n | n) < n-k) < 2^{-k}$

So most such random sequences have complexity close to their length. Lets invert that idea to get a definition for randomness in terms of complexity.

Definition (Algorithmically Random)				
A sequence x_1, x_2, \ldots, x_n is algorithmically random if				
$K(x_1, x_2, \ldots, x_n n) \ge n$				
			2000	
atthew Roughan (School of Mathematical S	Information Theory	September 18, 2013	10 / 19	

Compressibility and Randomness
Definition (Incompressible)
An infinite string is incompressible if
$\lim_{n\to\infty}\frac{1}{n}K(x_1,x_2,\ldots,x_n n)=1$
Theorem (Strong Law of Large No.s for Incompressible Sequences)
If a binary string x_1, x_2, \ldots is incompressible, then it satisfies
$rac{1}{n}\sum_{i=1}^n x_i ightarrow rac{1}{2}$
So incompressible sequences look random: they have the same proportion of ones and zeros as a set of fair coin tosses. But we could have done the same thing for any set of substrings, so any statistic of the sequence will satisfy the statistical tests for randomness.

Information Theory

September 18, 2013

11 / 19

Incompressibility means that as the length of the sequence grows, we loose any ability to compress it – the shortest program to reproduce it is as long as the data itself.

For proof, see [CT91, pp.157-158].

So we have built up a relationship between randomness and complexity. Pity complexity isn't computable :)

Infinite Monkeys	
 Imagine monkeys typing randomly on a keyboo or professors :) 	ard
 We know they eventually type Shakepearse's of eventually 	collected works
 Presume they type a random program most programs will be nonsense but a few will execute 	
• What sort of output should we expect?	
Atthew Roughan (School of Mathematical : Information Theory	Image: Non-Aligned point Image:

Information Theory Universal Probability Universal Probability	Infinite Monkeys 4 Unagine monkeys typing randomly on a kapleand 4 We know they sometharly typing Schaleganewir a callentiat social 4 We know they typing a random gragene 5 a social social social 4 What soci of output should use segment?

Monkey Programs

- What sort of output should we expect?
 - random program **p** has probability $P(\mathbf{p}) = 2^{-\ell(\mathbf{p})}$
 - $\star\,$ shorter programs are more likely
 - if a short program produces a long output x, then that output must be highly compressible
 - ★ string must have structure
 - \star it isn't algorithmically random
 - but most strings are close to random (see earlier)
 - ★ so simple strings are more likely than complex strings of the same length

2013-09-18	Information Theory Universal Probability Monkey Programs	$\label{eq:second} \begin{aligned} & Monikey \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Universal Probability
Definition (Universal Probability)
The universal probability of a string x is

$$P_{\mathcal{U}}(x) = P(\mathcal{U}(p) = x) = \sum_{p:\mathcal{U}(p)=x} 2^{-\ell(p)}$$
Might be
• probability of the string in nature
• think of inputs as random in some sense, transformed by some process
(nature)
• probability of financial time series
• random inputs, transformed by market
Implicit belief is that simpler strings are more likely than complicated
strings: e.g. Occam's Razor (choose the shortest program that can
generate a given string).

Matthew Roughan (School of Mathematical School of Mathematical Schoo

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = ◇ Q (~ September 18, 2013 15 / 19

Universal Probability

Definition (Universal Probability)

The universal probability of a string \mathbf{x} is

$$P_{\mathcal{U}}(\mathbf{x}) = P(\mathcal{U}(\boldsymbol{p}) = \mathbf{x}) = \sum_{\mathbf{p}: \mathcal{U}(\mathbf{p}) = \mathbf{x}} 2^{-\ell(\mathbf{p})}$$

Might be

- probability of the string in nature
 - think of inputs as random in some sense, transformed by some process (nature)
- probability of financial time series
 - random inputs, transformed by market

Implicit belief is that simpler strings are more likely than complicated strings: e.g. Occam's Razor (choose the shortest program that can generate a given string).

Information Theory

Universal Probability and Kolmogorov Complexity

Theorem

There exists a constant c such that for all strings \mathbf{x}

 $2^{-K(\mathbf{x})} \leq P_{\mathcal{U}}(\mathbf{x}) \leq c 2^{-K(\mathbf{x})}$

- So universal probability is essentially determined by complexity.
- The theorem confirms our intuition that simpler sequences are more probable.
- Can also write as

atthew Roughan (School of Mathematical

$$\mathcal{K}(\mathbf{x}) - c' \leq -\log_2 \mathcal{P}_\mathcal{U}(\mathbf{x}) \leq \mathcal{K}(\mathbf{x})$$

• Remember Shannon code lengths

 $\ell(\mathbf{x}) = \left\lceil -\log p(\mathbf{x}) \right\rceil$

Information Theory

• So we have come around full circle between complexity, compressibility, randomness and probability.

17 / 19

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 約९0

September 18, 2013

16 / 19

5013-09-18	ormation Theory - Universal Probability - Universal Probability	Universal Probability Definition (Universal Probability) The survey approximation of the string in a string + is $P_{n}(\mathbf{x}) = P(\mu(t_{0}) - \mathbf{x}) = \sum_{\mu \in \mathcal{H}(t_{0}) - \mu}^{-2\mu(\mu)}$ Nogits is a probability of the string in nature - a p

Assignment

 O Argue that the Kolmogorov complexity of a sequence $x\,y$ formed by concatenating $x,y\in\{0,1\}^*$ satisfies

$$K(\mathbf{x} \, \mathbf{y}) \leq K(\mathbf{x}) + K(\mathbf{y}) + c$$

Now give an example where the two sequences are complex, but the concatenation is relatively simple.

Suppose you have Monkey's typing random 1s and 0s. Give a rough estimate of the probability that the Monkey types:

① 0ⁿ,

atthew Roughan (School of Mathematical

2 $\pi_1 \pi_2 \dots \pi_n$ (where π_i is *i*th bit in the binary expansion of π),

• A binary representation of the complete works of Shakespeare. Now imagine the monkey is typing a random program into a computer. Estimate now the rough probability that the computer outputs

Information Theory

- **1** 0^n followed by any arbitrary sequence,
- 2 $\pi_1 \pi_2 \dots \pi_n$ followed by any arbitrary sequence,
- A binary representation of the complete works of Shakespeare followed by any arbitrary sequence.

September 18, 2013 18 / 19

Fu	rther reading I				
				<i></i>	NA /*1
	and Sons, 1991.	I Joy A. Thomas,	Elements of infor	<i>mation theory</i> , John	Wiley
			< □ >	(個)(日)(日)	- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
latthew	Roughan (School of Mathematic:	Informatio	on Theory	September 18, 2013	10 / 10

Information Theory Universal Probability O Assignment	Assignment: • Assignment the following complexity of a sequence sty formed by constantial eq. $(0, 1)^{-1}$ statistics $\mathcal{L}(q) \leq (0, 1)^{-1}$ statistics $\mathcal{L}(q) \leq (0, 1)^{-1} \in \mathcal{L}$. There are a statistical in a statistical interval in the transmission are complexe, but the momentum in a statistical in a statistical interval i