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All sorts of computer errors are now turning up. You’d be
surprised to know the number of doctors who claim they are
treating pregnant men.

Isaac Asimov
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The Noisy Channel
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Information Theory

The Noisy Channel

The basic setup

An example of the transmission channel consider PSK (Phase Shift Keying).

� Phase is used to indicate a symbol

– any sine wave has amplitude, frequency, and phase
– phase shifts can be WRT a reference signal (Coherent PSK) or WRT

to the signal itself (Differential PSK)

� Represent phase as a point on the complex plane

– each symbol is a point on the unit circle

� Example

– Binary-PSK (BPSK) - two phases
– Quadrature-PSK (QPSK) - four phases

� Alternatives

– ASK - Amplitude Shift Keying
– FSK - Frequency Shift Keying

PSK is comparatively simple (to build), and so is used often, e.g. in wireless LAN
standards, RFID, ...

The setup

Digital messages could be
I text
I audio (digitally coded, e.g., PCM)
I images (digitally coded, e.g., PNM)
I video (digitally coded. e.g., MPEG)
I telemetry (temperature, ...)
I etc.

abstract it to be a series of symbols.

Transmission channel could be
I a wire (copper or fibre)
I wireless
I storage media (transmission over time)

abstract it with some noise model.
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The Noisy Channel

The setup



The fundamental questions

Questions: (from Lecture 1)

Can we have reliable communications?

How much noise can we tolerate?

How fast can we transmit? OR How much data can we store?

and how do these three issues interrelate?
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The Noisy Channel

The fundamental questions

Digital Communications Channels
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Definition (Discrete Channel)

A discrete channel is a system with an input alphabet X , and output
alphabet Y, and a probability transition matrix p(y |x) that describes the
probability of observing the output symbol y ∈ Y given input x ∈ X .

Definition

A discrete channel is said to be memoryless if the probability distribution
of the output symbols depends only on the current input (and is hence
conditionally independent of future and previous inputs or outputs).
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The Noisy Channel

Digital Communications Channels

p(y |x) is a little like the transition matrix in a Markov chain, but

1. the input and output states don’t have to be the same set

2. we only go through one step, so there is no “chain”



Example 1: Binary Symmetric Channel

probability 1-α1 1

00
probability 1-α

probability
 α

X Y

P(Y |X ) =

(
1− α α
α 1− α

)
We would say the above channel was noiseless if α = 0.

Definition (Noiseless Channel)

If p(Y |X ) is the identity then the channel is noiseless.
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The Noisy Channel

Example 1: Binary Symmetric Channel

[CT91, 8.1.4, pp.186-187] or [Mac11, p.148] or [?, p.124].

p(Y = 0 | X = 0) = 1− α
p(Y = 1 | X = 0) = α

p(Y = 0 | X = 1) = α

p(Y = 1 | X = 1) = 1− α

This case is obviously a discrete, memoryless channel.

Example 2: Binary Erasure Channel

Some bits are lost (rather than corrupted)

probability 1-α1 1

00

X Y

probability 1-α

probability α

probability α

?

P(Y |X ) =

(
1− α α 0
0 α 1− α

)
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The Noisy Channel

Example 2: Binary Erasure Channel

[CT91, 8.1.5, pp.187-188] or [Mac11, p.148] or [?, p.124].

p(Y = 0 | X = 0) = 1− α
p(Y =? | X = 0) = α

p(Y = 1 | X = 0) = 0

p(Y = 0 | X = 1) = 0

p(Y =? | X = 1) = α

p(Y = 1 | X = 1) = 1− α



Example 3: Non-Overlapping Output
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Channel appears to be noisy, but really isn’t, as we can exactly determine
the input from the output.

P(Y |X ) =

(
2/3 1/3 0 0
0 0 1/2 1/2

)
Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 8, 2013 11 / 30

Example 3: Non-Overlapping Output

1

1

0

0

X Y

2/3

2

3

1/3

1/2

1/2

Channel appears to be noisy, but really isn’t, as we can exactly determine
the input from the output.

P(Y |X ) =

(
2/3 1/3 0 0
0 0 1/2 1/2

)2
0
1
3
-1
0
-0
8

Information Theory

The Noisy Channel

Example 3: Non-Overlapping Output

[CT91, 8.1.2, pp.185-186] or [Mac11, p.148].

Example 4: Noisy Typewriter

X = Y = {A,B,C , . . . ,Z , space}, and we type the correct letter with
probability 1/3, or an adjacent letter on either side, with the same
probability.

X

Y

1/3

A B C D E Y Z space

A B C D E Y Z space
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The Noisy Channel

Example 4: Noisy Typewriter

[CT91, 8.1.3, pp.185-186] or [Mac11, p.148].
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Example 5: Z Channel

probability 1-α1 1
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P(Y |X ) =

(
1 0
α 1− α

)
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The Noisy Channel

Example 5: Z Channel

[Mac11, p.148] or [?, p.124].

p(Y = 0 | X = 0) = 1

p(Y = 1 | X = 0) = 0

p(Y = 0 | X = 1) = α

p(Y = 1 | X = 1) = 1− α

The z channel is used to model some data storage systems, where only
one type of error is possible:
http:

//en.wikipedia.org/wiki/Z-channel_(information_theory)

Native ternary codes

Most codes are actually binary (even if they don’t look it)
I e.g. ASCII makes Letters into binary
I binary works well with current digital computer systems
I various attempts at ternary, or other computers rarely seem to work

One example of native ternary computation is in a TCAM
I CAM = Content Addressable Memory

F useful for lots of computation tasks
F instead of providing, say an array full of data, and having to search it

for a particular value (to get the index), you can directly look up the
content-value pair in one operation

F think of as hardware associative array

I TCAM = Ternary Content Addressable Memory
F can match contents against 1 or 0 or ? (don’t care)
F useful for routers looking up Internet packet addresses

1?110 matches 11110 or 10110

I only used for specialised tasks as they are expensive (cost and energy)
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Native ternary codes

http://en.wikipedia.org/wiki/Content-addressable_memory

http://en.wikipedia.org/wiki/Three-valued_logic

http://en.wikipedia.org/wiki/Ternary_computer

http://en.wikipedia.org/wiki/Z-channel_(information_theory)
http://en.wikipedia.org/wiki/Z-channel_(information_theory)
http://en.wikipedia.org/wiki/Content-addressable_memory
http://en.wikipedia.org/wiki/Three-valued_logic
http://en.wikipedia.org/wiki/Ternary_computer
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Channel Capacity
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Channel Capacity

Definition (Operational Channel Capacity)

The highest rate of bits we can send per input symbol, with an arbitrarily
low probability of error is called the operational channel capacity.

Let’s try and work on what this could be.
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Channel Capacity



Channel Capacity: Q0

How much information could we theoretically pump through a channel?

Let’s start with units

Channel capacity C is measured in bits / input symbol
I Remember, with D-ary code, the there are D symbols we can send.
I With no errors, and fixed length binary codes we have log2D bits per

symbol
F e.g., ASCII: there are 256 symbols (the numbers 0-255) with 8 bits per

symbol

Transmission rate T symbols / second

Channel Rate = C × T bits / second
I commonly there is a tradeoff
I e.g. the following are equivalent

F 256 symbols @ 1 per second OR 2 symbols @ 8 per second
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Channel Capacity: Q0

Channel Capacity: Q1

Does the input distribution matters?

think about the Z-Channel example
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Channel Capacity: Q1



Channel Capacity: Q2

What about noiseless coding/compression?

What might be the best way to improve the rate of information?
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Channel Capacity: Q2

Huffman Coding Example 1

X Probability Codeword (z1z2 . . . z`k ) p(zi = 0 | X = x)

a 0.25 01 1/2

b 0.25 10 1/2

c 0.2 11 0/2

d 0.15 000 3/3

e 0.15 001 2/3

P(zi = 0) =
∑
x

p(zi = 0 | X = x)pX (x)

=
1

2
p(X = a) +

1

2
p(X = b) +

0

2
p(X = c) +

3

3
p(X = d) +

2

3
p(X = e)

= 0.5

P(zi = 1) = 0.5
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Huffman Coding Example 1

Non-exact cases:

� Huffman encoding Example 2 has

PZ (Z = i) = (0.57, 0.43)

and
H(X ) = 0.987 bits per symbol

� Huffman encoding Example 3 (ternary code) has

PZ (Z = i) = (0.35, 0.325, 0.325)

and
H3(X ) = 0.9994 terns per symbol



Prefix-free codes, and symbol probability

We can see this, at least in the dyadic case where optimal binary
codeword lengths are

`k = − log2 p(xk)

In the dyadic case, the two smallest probabilities must be equal
I in building the Huffman tree, we sum these to get a new dyadic

probability
I as noted in Huffman proofs, these differ only in the last symbol of the

code
I so WRT to this last digit, there is an equal probability of either
I the same holds recursively as we build the tree, so at each step, the

last digit will be probabilistically balanced

So for optimal Huffman tree on dyadic probabilities the probability of
0 and 1 in resulting output are exactly balanced

Obviously this is only approximately true when probabilities aren’t
dyadic
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Prefix-free codes, and symbol probability

Channel Capacity: Q3

So for noiseless case, we might think of it as compressing the input. Can
we present a more formal case for that?

Assume we compress the input
I H(X ) is entropy of the input, and HD(Z ) = 1 is the entropy of the

compressed input, which is passed to the channel

compressinformation
source

ABCD...

noiseless
channel

Z Yp(y|z)X

The expected length L of the optimal codewords for a random
variable X (for any ε > 0 for large enough blocks) satisfies

H(X ) ≤ L < H(X ) + ε
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Channel Capacity: Q3

L is the average codeword length

L =
∑

pk`k

And remember that for a D-ary code, we would look at the entropy
HD(X ) in the result.
Also remember that by block encoding we can get L arbitrarily close to
H(X )



Channel Capacity: Q3

compressinformation
source

ABCD...

noiseless
channel

Z Yp(y|z)X

Use binary codes for simplicity
I Z ∈ {0, 1}
I assume channel can send T bits per second
I entropy H(Z ) ' 1

Average code length L ' H(X )
I can send average T/L ' T/H(X ) symbols X per second
I so channel capacity = bits per symbol

C =
bits per second

symbols per second
' T

T/H(X )
= H(X ) bits per symbol X
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Channel Capacity: Q3

We can think of H(X ) two ways

� amount of uncertainty about X before we observe it

� amount of information (in bits) we learn about X after we observe it

The second idea makes sense here: each symbols can impart H(X ) bits

of information on the receiver.

Binary Erasure Channel: Q4

In the binary erasure channel, we loose a bit with probability α. What can
we do about that?

One approach is to use feedback

if we don’t receive a bit, we retransmit it again until it gets through

results in a geometric distribution of number of (re)transmissions
needed

P(N = n) = (1− α)αn−1

average number of transmissions is 1/(1− α)

number of bits we can send (on average) with m transmissions is m
divided by the number of transmissions per bit m(1− α)

C = 1− α bits per input binary symbol
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Binary Erasure Channel: Q4

Can we do this without feedback?

In this example, we know when a bit is erased, but what if we have a

random error that isn’t obvious? One way to approach this is to do error

checking using a checksum or parity bit to highlight most errors, and

then retransmitting when an error occurs.



Channel Capacity: Q5

If we have noise, how would we guess the input symbol from the output?

This is a standard inference problem:

one approach is maximum a-posteriori (MAP) estimation

given output Y we estimate

p(X |Y ) = p(Y |X )
P(X )

P(Y )
=

p(Y |X )P(X )∑
x P(Y |x)P(x)

by Bayes rule

So
I we assume we know P(Y |X )
I we need to have an idea of P(X )
I the bottom line is irrelevant, as it is a constant normalising factor for

any given Y

Choose the x which gives the maximum probability
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Channel Capacity: Q5

What BER (Bit Error Rates) α are common? Usually expressed as power
of 10, e.g., 10−9 would mean one bit in a billion was transmitted
incorrectly.

� optical fibre: 10−10−10−14

– Recommendation of 10−13 BER for 10Gb Ethernet

� Cat-5(e) twisted pair: 10−10−10−14

� wireless: 10−2−10−6

– IEEE 802.11(a,b) receiver should have min BER of 10−5

Does depend on the D2A coding, conditions, and bit rates.

Often estimated by looking at the noise, and inferring, rather than direct
estimation simply because the numbers may be too small.

In reality bit errors can be correlated, though we often assume that a
channel is memoryless.

Example: Binary Symmetric Channel

Take, for example, output Y = 1

argmax
x

p(X = x |Y = 1) = argmax
x

p(Y = 1|X = x)P(X = x)

= argmax
x
{αP(X = 0), (1− α)P(X = 1)}

assume the errors aren’t too big

assume that the input probabilities aren’t too unbalanced

Then this will return X = 1, and similarly X = 0 when Y = 0.

error rate is α

with error checking and retransmission, this would look like the binary
erasure channel, but the amount of checking creates an overhead,
which we need to estimate
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Fano’s Inequality
Suppose we know a random variable Y and want to guess the value of X

We want a function g(Y ) = X̂
Obviously:

I Y only helps guess X if H(X |Y ) > 0
I When X is completely dependent on Y , its easy to guess

so we can see the H(X |Y ) is important for this problem.
Fano’s inequality formalises the question

Theorem (Fano’s Inequality)

Given RVs X and Y related by p(y |x), and an estimate X̂ = g(Y ), of X
based on Y with probability of error Pe = P(X 6= X̂ ) then

H(Pe) + Pe log
(
|X | − 1

)
≥ H(X |Y )

The inequality can be weakened, and rearranged to give

Pe ≥
H(X |Y )− 1

log |X |
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Fano’s Inequality

Note that Pe = 0 implies that H(X |Y ) = 0, as our intuition suggested.

Note also that when we have a binary code |X | = 2, and so the 1st
inequality becomes:

H(Pe) ≥ H(X |Y )

and the second is
Pe ≥ H(X |Y )− 1

so there is a direct relationship between errors and the conditional
entropy.

The proof of Fano’s inequality is in [CT91, p.39-40] along with an
example showing the inequality is sharp.

Channel Capacity: Q6

Is entropy relevant here?

H(X ) is the uncertainty about X before we know the output
I we know this was important for noiseless channels

H(X |Y ) is the information we gain about X from Y
I if this is small (e.g. they are nearly completely dependent), then there

is little noise, and small errors
I if this is nearly = H(X ) (e.g., they are almost independent), and we

learn little about inputs from the outputs

So why not think of capacity something like?

C = H(X )− H(X |Y )

which is the amount of information we learn about X by observing Y .
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Channel Capacity: Q6



Duality

Duality between data compression and error correction:

Redundancy in language exists, at least in part, to help correct
potential errors

I redundancy helps because some sequences are impossible or unlikely
I we can look for a “nearby” one that is more likely

In compression, we were coding to remove this redundancy

To do error correction, we need to add back some redundancy

Later, we will show that the encoder and decoder given above can be
separated into two stages:

I compression
I error correction coding

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory October 8, 2013 29 / 30

Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

David J. MacKay, Information theory, inference, and learning algorithms,
Cambridge University Press, 2011.
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